我们热爱生命科学!-生物行

第三节 休克的病理生理变化(2)

时间:2006-06-19 20:31来源:大众医药网 作者:admin 点击: 315次

  二、血液流变学的变化

  血液流变学(hemorheology)是研究血液流动和变形的科学,或者说是研究血液的流变性、凝固性、血液有形成分(主要是红细胞)粘弹性以及心血管的粘弹性和变形的科学。物体在一定外力作用下能流动或变形的特性,称为该物体流变性。一切流体在一定外力作用下,都具有流动性,但流动的难易,则主要取决于流体内部对于流动起阻抗作用的分子之间和颗粒之间的内摩擦力(即流体的粘度)。例如,水的粘度低,容易流动,即流度大;血液的粘度大(红为蒸馏水的4-5倍),不易流动,即流度小。由于流体的流动是以物体的变形为基础,所以流体的粘度是映流体流变性的重要指标。

  血液是由水、无机盐、蛋白质、脂类、糖等大小分子所组成的混合液,其中还悬浮着大量具有可塑性的红细胞,所以血液是一种高浓度的悬浊液。因此能够影响血液流变性的因素主要有:血细胞压积(血液粘度随血细胞的压积增加而升高)、血细胞的分散程度(血细胞处于分散状态,血液粘度较低;红细胞或血小板发生聚集,血液粘度升高)、红细胞的可塑性(红细胞可塑性降低,不易变形,血液粘度增加)、血浆内高分子化合物的浓度(血浆粘度大小与其所含蛋白质、脂类、糖等的浓度呈正比)、血管内壁平滑度(血管内皮受损、变形,流经的血液粘度升高)。此外,与血管的长度、口径、血管壁的弹性和张力也有关系。

  休克时血液流变学的主要变化是:

  1.血细胞比容血细胞比容的改变与休克的原因和发展阶段有关。在低血容量性休克的早期,由于组织间液向血管内转移,导致血液稀释,血细胞比容降低,当休克进入微循环淤血期,由于微血管内流体静压升高和毛细血管通透性增高,液体乃从毛细血管内外渗至组织间隙,因而血液浓缩,血细胞比容升高。血细胞比容越高,血液粘度越大,血流阻力越大,而血流量则越少,血流更加缓慢。

  2.红细胞变形能力降低,聚集力加强在正常情况下,红细胞在流经小于其直径的毛细血管时,可折叠、弯曲而发生多种变形以减少其宽度,从而得以顺利通过。现已证明,休克时红细胞的变形能力明显降低,其主要原因是:①休克Ⅱ期时因血液浓缩和组织缺氧所引起的血液渗透压升高和pH降低,可使红细胞膜的流动性和可塑性降低并使红细胞内部的粘度增加;②ATP缺乏(可由缺氧或某些休克动因直接引起)可使红细胞不能维持正常的功能和结构。结果是由于红细胞的变形能力降低而难以通过毛细血管,从而导致血流阻力增高。

  红细胞聚集加强,是休克时细胞流变学的重要改变之一。轻者4、5个红细胞聚集在一起,重者20~30个红细胞聚集成长链或团块。引起红细胞聚集的原因是:①血流速度变慢,切变率(shear rate)降低:正常时由于血流速度快和切变率高。可防止红细胞的聚集,并可促使聚集的红细胞解聚。休克时随着血压下降,血液流速减慢和切变率降低,红细胞就易于聚集。②红细胞表面电荷减少:正常红细胞表面因含有唾液酸的羧基,故都带有负电荷。红细胞之间的这种同电荷的排斥力可阻止红细胞互相靠拢和聚集。休克时,尤其是内毒素性休克时,红细胞表面负电荷减少,可能是由于血浆中带正电荷的蛋白质增多,被红细胞吸附所致,从而使红细胞彼此靠拢发生聚集。③血细胞比容增加:已如前述,休克时由于血浆外渗,血液浓缩,故血细胞比容增加,这就可以促进红细胞聚集。④纤维蛋白原浓度增高;纤维蛋白原覆盖于红细胞表面,在红细胞之间可形成有相互聚集作用的“桥力”。休克时由于纤维蛋白原浓度增高,致使“桥力”增大乃至超过负电荷的排斥力。因而就可导致红细胞的聚集。红细胞聚集轻则增加血液粘度和血流阻力,重则可引起红细胞淤滞并阻塞微循环,甚至形成微血栓。

  (二)白细胞粘着和嵌塞

  正常微循环的血流是红细胞位于中央的轴流,血浆构成边流,虽然也可见到少量白细胞附壁滚动,但不发生附壁粘着现象。休克时可见白细胞附着于小静脉壁,致使血流阻力增高和静脉回流障碍。发生白细胞附壁的原因可能与白细胞和管壁之间吸引力增大,休克时血流变慢和切应力(shear stress)下降等因素有关。休克时,还可见到白细胞嵌塞于血管内皮细胞核的隆起处或毛细血管分支处,这可增加血流阻力和加重微循环障碍,而且嵌塞的白细胞还可释放自由基和溶酶体酶类物质,从而破坏生物膜和引起坏死。休克时白细胞发生嵌塞的原因是:①白细胞的变形能力降低,故不易通过毛细血管而发生嵌塞;②休克时血压下降,脉压差减小,动脉血流量减少,驱动白细胞通过毛细血管的力量减弱,因而易于发生白细胞嵌塞。

  (三)血小板粘附和聚集

  血小板粘附是指血小板和血小板以外的物质相互粘附的现象,血小板聚集则是血小板之间相互发生反应并形成血小板团(或称血小板聚集物)的过程。粘附一旦开始,聚集过程也随之发生。在血小板聚集开始时,其表面首先失去光滑性,变得粗糙,形成有突剌的球状体(或称聚集型血小板)。在内毒素性、创伤性和烧伤性休克时,血液中这种聚集型血小板的数目增多,而且在微血管中有血小板粘附、聚集和血小板微血栓的形成。这种聚集的血小板不但阻塞微血管,还可释放多种生物活性物质如儿茶酚胺、TXA2、5-羟色胺等,使局部微血管收缩、通透性增高、血管内皮水肿和血流减少。此外,尚可释放促凝血的血小板因子(如PF3等),加速凝血过程,形成DIC。

  休克时引起血小板粘附和聚集的主要原因是:①血流减慢,血管内皮完整性破坏,内膜下胶原暴露,为血小板粘附提供了基础;②损伤的内皮组织释放ADP,发生聚集的血小板可释放ADP、TXA2以及血小活化因子(PAF),均可触发并加重血小板的聚集。

  (四)血浆粘度增大

  休克时,尤其是严重创伤或烧伤休克时,一方面由于机体发生应激,使体内合成纤维蛋白原增多;另一方面,在休克的微循环淤血期,毛细血管内的流体静压增高,微血管周围的肥大细胞又因缺氧而释放组胺并从而使毛细血管通透性增高,液体乃从毛细血管大量外渗至组织间隙,因而血液浓缩,使血浆纤维蛋白原浓度增高,有时纤维蛋白原可高达10g/L(1000mg/dl),故可使血浆粘度增大。这不但影响组织血液流量,并可促进红细胞的聚集。如当纤维蛋白原的浓度增到5~8g/L(500~800mg/dl)时,由于血浆粘度的增高,红细胞就发生聚集,形成缗钱状。

  总之,由于发生上述血液流变学的改变,不但会加重微循环障碍和组织的缺血缺氧,还可促进DIC的形成和休克的发展,近年来应用血液稀释治疗休克,其目的在于改善血液流变学,降低血流粘度。这种疗法已取得良好的效果。

  三、细胞代谢的变化以及功能、结构的损害

  休克时细胞的代谢障碍及其功能、结构的损害,既是组织低灌流、微循环流变学改变和/或各种毒性物质作用的结果,又是引起各重要器官功能衰竭和导致不可逆性休克的原因。

  (一)休克时细胞的代谢变化

  休克时细胞代谢改变比较复杂。由于休克的类型、发展价段以及组织器官的不同,其代谢改变的特点和程度也都有所不同,但共同的重要改变是:

  1.糖酵解加强休克时由于组织的低灌流和细胞供氧减少,使有氧氧化受阻,无氧酵解过程加强,从而使乳酸产生增多,而导致酸中毒。但严重酸中毒又可抑制糖酵解限速酶如磷酸果糖激酶等的活性,使糖酵解从加强转入抑制。

  2.脂肪代谢障碍正常情况下,脂肪分解代谢中产生的脂肪酸随血液进入细胞浆后,在脂肪酰辅酶A(脂肪酰CoA)合成酶的作用和ATP的参与下,被活化为水溶性较高的的脂肪酰CoA,后者再经线粒体膜上肉毒碱脂肪酰转移酶的作用而进入线粒体中,通过β-氧化生成乙酰辅酶A,最后进入三羧酸循环被彻底氧化。休克时,由于组织细胞的缺血缺氧和酸中毒,使脂肪酰CoA合成酶和肉毒碱脂肪酰转移的活性降低,因而脂肪酸的活化和转移发生障碍;另方面因线粒体获氧不足和/或某些休克动因(如细菌内毒素)、酸中毒等的直接作用使线粒体呼吸功能被抑制,使转入线粒体内的脂肪酰CoA不能被氧化分解,结果造成脂肪酸和/或脂肪酰CoA在细胞内蓄积,从而加重细胞的损害。

  (二)休克时细胞的损害

  休克时细胞的损害首先是生物膜(包括细胞膜、线粒体膜和溶酶体膜等)发生损害。

  1.细胞膜的损害 最早的改变是细胞膜通透性增高,从而使细胞内的Na+、水含量增加而K+则向细胞外释出,细胞膜内外Na+、K+分布的变化,使细胞膜Na+-K+ATP酶活性增高。因而ATP消耗增加,再加上ATP的供应不足和膜上受体腺苷酸环化酶系统受损,结果使控制细胞代谢过程的第二信使-cAMP含量减少,因此细胞的许多代谢过程发生紊乱,例如休克时肌肉细胞对胰岛素的反应减弱,使胰岛素促进细胞摄取葡萄糖的效应减弱甚至丧失。

  休克时引起细胞膜损害的原因是多方面的:

  (1)能量代谢障碍休克时因组织细胞的缺血缺氧,一方面ATP生成不足,使细胞膜不能维持正常功能和结构;另一方面脂肪酸氧化受阻,蓄积于细胞内的脂肪酸和脂肪酰CoA与细胞内Na+、K+、Ca等阳性离子结合形成“皂类”化合物,可直接对膜上脂类起“净化去垢”的破坏作用。

  (2)细胞酸中毒休克时细胞发生酸中毒,除与乳酸等蓄积有关外,还可能与下述因素有关:①细胞低灌流,使产生的CO2不易排出;②ATP分解过程中产生H+(MgATP2-→MgADP-+Pi2-+H);③胞浆Ca2+增多,可促使Ca2+进入线粒体并与其中的磷酸结合,在结合过程中也产生H+(3Ca2++2HPO42-→Ca3(PO4)2+2H+)。酸中毒可直接或间接破坏膜系统的功能和结构。

  (3)氧自由基的产生休克时氧自由基产生增多主要是由于①氧代谢途径改变:即休克时由于细胞的缺氧和/或内毒素对线粒体呼吸功能的直接抑制,细胞色素氧化酶系统功能失调,以致进入细胞内的氧经单电子还原而形成的氧自由基增多而经4价还原而形成的水减少;②休克时产生大量乳酸、NADH及由ATP分解产生的次黄嘌吟等物质都可提供电子,使氧发生不全性还原而变成氧自由基。另外,休克时因蛋白水解酶活性增高,可催化黄嘌吟脱氢 酶变为黄嘌呤氧化酶,从而使次黄嘌吟变成黄嘌呤和氧自由基。③感染性炎症,活化补体等可激活中性粒细胞和巨噬细胞,使之释放出氧自由基。

  氧自由基可通过膜脂质过氧化反应而破坏生物膜(参阅《缺血与再灌注损伤》)。

  此外,溶酶体酶、内毒素等也可破坏细胞膜的功能与结构。

  由于细胞膜的完整性在维持细胞的生命活动中起着重要作用。故当膜完整性破坏时,即意味着细胞不可逆性损伤的开始。

  2.线粒体损害休克时线粒体最早出现的损害是其呼吸功能和ATP合成受抑制,线粒体ATP酶活性降低。此后发生超微结构的改变,如基质颗粒减少或消失;继之,基质电子密度增加、嵴内腔扩张,随后,嵴明显肿胀,终至破坏。

  关于休克时线粒体损害的原因尚不完全清楚。缺氧可减少线粒体合成ATP,但除非在严重缺氧和伴有缺血时,并不引起线粒体膜的明显损害。目前认为,线粒体损害可能与下列因素有关:①内毒素等毒性物质及酸中毒对线粒体各种呼吸酶的直接抑制;②缺血导致线粒体合成ATP的辅助因子(如NAD、CoA和腺苷等)不足和细胞内环境(pH、离子)的改变。③前述的氧自由基对线粒体膜磷脂的过氧化作用等。

  线粒体是维持细胞生命活动的“能源供应站”。线粒体损害时,由于氧化磷酸化障碍,产能减少乃至终止,故必然导致细胞损害和死亡。

(责任编辑:泉水)
顶一下
(3)
100%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片