我们热爱生命科学!-生物行

生物芯片技术在药物R&D中的应用(2)

时间:2006-06-21 16:47来源:大众医药网 作者:admin 点击: 394次

  用DNA微阵列芯片进行药物研究还存在如下一些缺点:①由于杂交样品制备复杂,采用DNA微阵列芯片很难实现高通量。②DNA微阵列芯片只能用于检测已知序列的基因。③由于灵敏度的限制,采用现存的DNA微阵列芯片难以检测到表达水平很低的基因。

  除了DNA芯片外,组织芯片、蛋白质芯片和细胞芯片也在药物研究中崭露头角。最近,耶鲁大学的研究小组首次报道了真核生物蛋白质组水平的蛋白质微阵列芯片。他们表达和纯化了酵母的 5800种蛋白质,并将这些蛋白质点样固定在载玻片上,制作了酵母蛋白质组微阵列芯片。他们使用这种芯片筛选能与特定蛋白质和磷脂相互作用蛋白质,发现了新的能与钙调蛋白和磷脂相互作用的蛋白质。这种蛋白质微阵列芯片可以用于筛选与蛋白质相互作用的药物,还可以用于检测蛋白质翻译后的修饰。他们的研究成果证实了制作和使用蛋白质组微阵列芯片进行功能分析检测的可行性,并向人们预示了蛋白质微阵列芯片在药物开发领域的广阔应用前景。

  Zlauddin和Sabatinl发明了一种细胞微阵列芯片。他们首先将不同的质粒DNA点在玻璃片上,做成质粒DNA做阵列芯片。接着用脂质转染试剂处理该质粒DNA微阵列芯片,然后在处理好的质粒DNA微阵列上培养哺乳动物细胞。点在芯片上的质粒DNA在转染试剂的帮助下原位转染哺乳动物细胞,在质粒DNA微阵列的每一个质粒样品点的相同位置形成了转染了该质粒的细胞群。细胞因获得了外源DNA而获得了新的性状。这样,由质粒DNA芯片制成了由不同性状细胞组成的细胞做阵列芯片。他们尝试用这种细胞芯片来确证药物作用靶点,寻找能改变细胞生理状态的基因产物。这种新型细胞芯片可以用来在哺乳动物细胞内高通量筛选有可能成为候选先导分子的化合物、蛋白质或寡核苷酸。在功能基因组研究和药物开发等领域具有很大的应用潜力。

  2 生物芯片作为超高通量筛选平台的应用

  在过去的十几年里,随着科学的进步以及在巨大的经济利益驱使下,药物筛选技术得到了飞速的发展。在80年代中期(高通量筛选形成之初),每天只能筛选30种化合物,到90年代中期,每天可筛选1,500种化合物,而如今每天可筛选超过 100,000个化合物。高速、低成本的高通量筛选已成为当今药物筛选的主流,并逐渐向超高通量方向发展。在过去的几年中,世界上著名的制药公司纷纷与以高通量药物筛选技术为核心的中小型生物科技公司结盟或合作,采用高通量或超高通量药物筛选技术进行先导物分子的筛选。要进一步提高筛选率,高通量筛选技术的各个方面均需要技术创新,这为生物芯片技术进入药物筛选领域提供了宝贵的契机。

  提高药物筛选的通量,实现超高通量筛选有2 条途径:一是微型化,一是自动化。生物芯片作为一种新型技术平台,正可满足超高通量筛选微型化和自动化的需要。生物芯片技术应用于超高通量筛选有2个发展方向:一是微孔板/微阵列技术,一是微流体芯片技术。

  微孔板/微陈列技术

  微孔板技术的发展主要表现在板孔数的增加。目前,使用最多的是96孔及384孔板,也有人使用1536孔、3456孔、甚至 9600孔板。如Oldenburg等报道了用9600孔板(0.2μL/孔)分析系统,以金属蛋白酶为靶,对组合及分离纯化的化合物库进行筛选的结果。虽然随着材料科学和加工技术的发展,微孔板技术有了长足的进步,但其发展面临着一些不易解决的困难,主要有:微量液体极易蒸发,不适于那些不能用二甲亚砜(DMSO)作溶剂的筛选方法以及受限于当今还不够完善的微量液体分配技术。

  微阵列技术是将微孔板技术进一步微型化。最近,哈佛大学的研究人员开发了化合物微阵列芯片,主要用于筛选能与特定蛋白质特异性结合的化合物。他们将玻片表面进行化学处理,使其衍生化产生活性基团,然后将溶于有机溶剂中的化合物用机械手点在经处理的玻片表面,化合物与玻片表面的活性基团反应而被固定于玻片表面,这样就将不同的化合物排布成微阵列,固定在玻片表面,制成化合物微阵列芯片。随后将感兴趣的蛋白质进行荧光标记,然后与微阵列芯片上的化合物反应,经清洗后,再进行荧光检测就可以筛到能与这种蛋白质特异性结合的化合物。他们用化合物微阵列芯片进行了原理性实验,其结果表明,使用这种化合物微阵列芯片可以并行、快速地进行大规模的化合物与蛋白质的结合筛选。他们最先是将玻璃片表面进行马来酰亚胺衍生化处理,后来采用亚硫酰氯处理,都获得了成功。他们还尝试了使用这种化合物微阵列芯片进行大规模对映异构体的分型检测。加利福尼亚大学Davis分校的科学家们采用类似的方法也制造了一种化合物微阵列芯片。他们对玻琥载玻片表面进行氨基化处理,在氨基玻片上进行乙醛酰衍生化,然后将带有连接臂的配体分子点在修饰过的玻片表面。在进行化学连接反应之后,这种固定了不同小分子配体的微阵列芯片被用来进行了3种生物学检测:蛋白质结合检测、功能磷酸化检测和活细胞粘附检测。实验结果证实了化合物微阵列芯片可以帮助我们对由组合合成方法获得的大量化合物进行快速的功能分析和筛选。化合物微阵列芯片技术与基于微珠体的固相组合会成技术相结合为高通量药物筛选带来了一条新的途径,将对高通量药物筛选技术的发展产生积极的影响。

  最近,出现了一种被称为芯片膜片钳(patch-on- a-chip)的新技术。在这种膜片钳芯片上加工有检测电信号的点阵,点阵中的每一个点是一个电信号记录单元,同时每个点底部与负历相通,可以吸位细胞。这样膜片钳芯片上的每一个点就可以实现传统膜片钳技术的功能。膜片钳芯片具有操作简单、快速和可实现高通量等优点,可以用于电生理研究和高通量药物筛选。位于美国圣地亚哥的AVIVA公司正在致力于此项技术的开发。

  微流体芯片技术

  微流体装置的发展已广泛用于生化及细胞的分析。鉴于这项技术在超高通量筛选中的巨大应用前景,吸引了众多学术界和工业界的实验室对该项技术的研究与开发。借用半导体工业中所用的光刻技术将内径在10~100μm的做通道加工在玻璃或硅片中,利用电动泵和流体的压力来控制皮、纳升级液体的流动。该技术可减少几个数量级的试剂消耗量,并能提高数据质量。它所采用的并行样品处理程序可以获得更高的筛选通量。多种类型的筛选分析方法在微流体芯片上操作的可行性(包括结合分析、酶分析和细胞分析)已得到实验论证。

  Jiang等制造了2种可以用于高通量检测食物污染物和进行药物筛选的微流体装置。他们以硅为模板,采用模压和毛细管成形技术在聚酯和多聚硅氧烷二甲酯中加工激流体网络。在第1种装置的微通道中夹着一块PVDF(polyvinylidene fluoride)膜可用来结合、浓缩目标化合物,然后再直接通过质谱方法鉴定目标化合物。第2种装置被用来超滤分离本巴比妥和苯巴比妥与抗体的复合物。整个过程包括上样、清洗和解离都是连续进行的。这些微流体装置不仅可以显著降低系统死体积和所需样品量,而且与先前报道的方法相比灵敏度至少可提高 1~2个数量级。

  Capliper Technologies公司设计的芯片装置,将从微孔板中取样与随后进行的酶抑制剂筛选结合在一起。目前,该芯片装置已制作完成,并通过了测试。测试的化合物通过与芯片相连的硅毛细管注射入芯片中,与酶及荧光酶底物混合以使它们在主反应通道内发生相互作用。酶与荧光底物反应产生基线荧光信号。如果测试化合物抑制酶的活性,信号将会暂时性的降低,通过检测荧光信号的强度就可以测定化合物抑制酶的活性。这种装置每次进样量 1~10nL,进样同期10~30s。利用这个系统,每块芯片可对几千种化合物进行筛选。目前对该系统进行改进的努力主要集中在提高系统的耐用性和将不同类型的筛选方法移植到这个平台上来。最新设计的微流体芯片将液体分发。化合物稀释与筛选分析 3者集成起来,由于减少了被视为瓶颈的芯片使用前的准备步骤,使得该系统更加方便实用。

  目前,致力于开发微流体芯片技术并将其应用于药物筛选的公司有:Caliper Technologies,Orchid

  BioSciences,ACLARA BioSciences,Li-Cor等。

  3 生物芯片在毒理学研究中的应用

  对药物进行毒性评价,是药物筛选过程中十分重要的一个环节。现在毒理学家多采用鼠为模型通过动物实验来确定药物的潜在毒性。这些方法需要使用大剂量的药物,花上几年时间,花费巨大。 DNA芯片技术可将药物毒性与基因表达特征联系起来,通过基因表达分析便可确定药物毒性,使得药物毒性或不期望出现的效应在临床实验前得以确认。用DNA芯片可以在一个实验中同时对成千上万个基因的表达情况进行分析,为研究化学或药物分子对生物系统的作用提供全新的线索。该技术可对单个或多个有害物质进行分析,确定化学物质在低剂量条件下的毒性,分析、推断有毒物质对不同生物的毒性可比性。如果不同类型的有毒物质所对应的基因表达诺有特征性的规律,那么,通过比较对照样品和有毒物质的基因表达谱,便可对各种不同的有毒物质进行分类,在此基础上通过进一步建立合适的生物模型系统,便可通过基因表达港变化来反映药物对人体的毒性。

  已经有不少研究工作表明,利用DNA芯片预测化合物毒性和对毒性物质进行分类是可行的。 Waring等用15种已知的肝毒性化合物处理大鼠。这些毒物将对肝细胞造成多种伤害,如DNA 损伤、肝硬化、肝坏死和诱发肝癌等。从大鼠肝脏中提取RNA,用DNA芯片作基因表达分析。通过将基因表达结果与组织病理分析和临床化学分析的结果进行比较,发现两者有很强的相关性。该结果表明,DNA芯片分析是一种可以用来分析药物安全性和对环境毒物进行分类的灵敏度较高的方法。在另一报道中他们用同样的15种化合物作用大鼠的肝细胞,再用DNA芯片作基因表达分析,结果显示具有相似毒性机制的化合物所获得基因表达谱具有相似性。Gerhold等给大鼠服用苯巴比妥和地塞米松等药物,使用寡核苷酸芯片,检测了大鼠肝组织中与药物代谢、毒性和能量代谢相关基因的表达。最后,通过分析基因表达变化的结果就可以推测药物代谢与毒性的情况。Bartosiewicz等则利用 DNA芯片对环境毒物进行了检测。

  目前已有多种较为成熟的毒理学DNA芯片继问世。美国国立环境卫生研究院分子致癌机制实验室的Barrett等人研制了一种名为ToxChip的 DNA芯片,可以灵敏的检测有害化学物质对人体基因表达的作用(http://dir,niehs.nih.gov/dirlmc/ lmcmain.htm);Gene Logic公司的产品Flow-thru Chip已经试投入商业运用,可用以检测药物和毒物对生物体的影响,他们还建立了庞大的基因表达数据库,可以用于药物靶点确认和毒性预测(http:// www.genelogic.com/geneexp.asp);Syngenta公司和AstraZeneca Pharmaceuticals公司的科学家设计制作了被称为ToxBlot arrays的DNA芯片,其第代产品ToxBlot Ⅱ含有大约13000人的基因,包含了所有毒理学家感兴趣的基因家族和信号通路;美国化学工业毒物研究所(Chemical Industry Insti tute of Toxicology)中专门有一个工作小组用微阵列 技术研究一些致癌毒物对人体的作用(http;// www.ciit.org/toxicogenomics/construction.html)

  4 生物芯片在药物基因组学中的应用

  药物基因组学是在基因组学的基础上研究不个体对药物反应的差异以便针对不同的基因型"量身定做"药物,从而将药物的药效充分发挥而不良反应减少到最小。其优点为:①在进入临床试验前,药物基因组学可以通过化合物对基因多态性的影响挑选先导物,从而降低由于药效的不稳定导致的失败几率。②在Ⅰ期临床试验中,个体基因型可以预见基因多态性造成的药物代谢动力学差异。③由于药物作用靶蛋白的差异反映在基因多态性上,因此在Ⅱ期临床试验中,由个体基因型可以预见基因多态性造成的药效差异,由此来指导Ⅲ期临床试验 ④一旦发现一种可以导致药物作用差异的蛋白,其他与之相关的蛋白可作为潜在的药物作用靶。

  将DNA芯片技术应用于药物基因组学,一方面可以加速药物基因组学的发展,主要是利用DNA 芯片进行基因功能及其多态性的研究,以确认与药物效应及药物吸收、代谢、排泄等相关的基因,并查明这些基因的多态性;另一方面DNA芯片利用药物基因组学的研究成果,根据基因型将人分群,以实现药物基因组学研究的目的和价值。从这两方面足以看到DNA芯片技术对药物基因组学研究的影响之大。

(责任编辑:泉水)
顶一下
(4)
100%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片