我们热爱生命科学!-生物行
当前位置: 主页 > 热点聚集 > 学界动态

光学计算机不是梦想

时间:2005-08-16 22:16来源:本站原创 作者:clifford 点击: 1166次

由于有NASA的研究支持,光学计算机不再是遥不可及。详情见连接:

Now, Just A Blinkin' Picosecond!

NASA scientists are working to solve the need for computer speed using light itself to accelerate calculations and increase data bandwidth.

Dr. Donald Frazier monitors a blue laser lightApril 28, 2000 -- Watches tick in seconds. Basketball games are timed in 10ths of a second, and drag racers in 100ths. Computers used to work in milliseconds (1,000ths), then moved up to microseconds (millionths), and now are approaching nanoseconds (billionths) for logic operations - and picoseconds (trillionths!) for the switches and gates in chips.

"That's great in theory," says Dr. Donald Frazier of NASA's Marshall Space Flight Center. "Except that electronic signals, even with Very Large Scale Integration (VLSI) and maximum miniaturization, are bogged down by many aspects of the solid materials they travel through. So we've had to find a faster medium for the signals - and the answer seems to be light itself!"

Above: Dr. Donald Frazier monitors a blue laser light used with electro-optical materials.

shuttle&envelope icon
Send this page to a friend!
Light travels at 186,000 miles per second. That's 982,080,000 feet per second -- or 11,784,960,000 inches. In a billionth of a second, one nanosecond, photons of light travel just a bit less than a foot, not considering resistance in air or of an optical fiber strand or thin film. Just right for doing things very quickly in microminiaturized computer chips.

"Entirely optical computers are still some time in the future," says Dr. Frazier, "but electro-optical hybrids have been possible since 1978, when it was learned that photons can respond to electrons through media such as lithium niobate. Newer advances have produced a variety of thin films and optical fibers that make optical interconnections and devices practical. We are focusing on thin films made of organic molecules, which are more light sensitive than inorganics. Organics can perform functions such as switching, signal processing and frequency doubling using less power than inorganics. Inorganics such as silicon used with organic materials let us use both photons and electrons in current hybrid systems, which will eventually lead to all-optical computer systems."

"What we are accomplishing in the lab today will result in development of super-fast, super-miniaturized, super-lightweight and lower cost optical computing and optical communication devices and systems," Frazier explained.

The speed of computers has now become a pressing problem as electronic circuits reach their miniaturization limit. The rapid growth of the Internet, expanding at almost 15% per month, demands faster speeds and larger bandwidths than electronic circuits can provide. Electronic switching limits network speeds to about 50 Gigabits per second (1 Gigabit (Gb) is 109, or 1 billion bits).

Dr. Hossin Abdeldayem, a member of Frazier's optical technologies research group, states that Terabit speeds (1 Terabit, abbreviated "Tb", is 1012, or 1 trillion bits) are needed to accommodate the growth rate of the Internet and the increasing demand for bandwidth-intensive data streams. Optical data processing can perform several operations simultaneously (in parallel) much faster and easier than electronics. This "parallelism" when associated with fast switching speeds would result in staggering computational power. For example, a calculation that might take a conventional electronic computer more than eleven years to complete could be performed by an optical computer in a single hour.

Dr. Hossin Abdeldayem"All-optical switching using optical materials can relieve the escalating problem of bandwidth limitations imposed by electronics," says Dr. Abdeldayem. "In 1998, Lucent Technologies introduced a lithographic submicron technology to further miniaturize electronic circuits and enhance computer speed. Additional miniaturization of electronic components only provides a short-term solution to the problem. There are also physical problems accompanied by miniaturization that might affect the computer's reliability. "

Drs. Frazier and Abdeldayem and their group in Huntsville, AL, have designed and built all-optical logic gate circuits for data processing at Gigabit and Terabit rates, and they are also working on a system for pattern recognition.

Left: Dr. Hossin Abdeldayem of NASA/Marshall works with lasers to develop a system for pattern recognition.

"We have also developed and tested nanosecond optical switches, which can act as computer logic gates," says Dr. Abdeldayem, who recently presented the group's research paper entitled "All-Optical Logic Gates for Optical Computing" at The Pittsburgh Conference in New Orleans, LA.

"Picosecond and nanosecond all-optical switches, which act as AND and partial NAND logic gates were demonstrated in our laboratory," explains Dr. Abdeldayem. "Such logic gates are members of a large family of gates in computers that perform logic operations such as addition, subtraction and multiplication. They are vital for the development of optical computing and optical communication. Our all-optical logic gates were made using a thin film of metal-free phthalocyanine compound and a polydiacetylene polymer in a hollow fiber"

CONTINUES AFTER SIDEBAR

Optical Development Boom is Worldwide

see captionPhotonics development is booming worldwide in optics and optical components for computing and other applications. Estimates of global photonic technology sales in 1999 were as high as $100 billion and rising with the ever-increasing demands of data traffic. KMI Corp. reports data traffic growing at 100% per year worldwide, while London's Phillips Group estimates that U.S. data traffic will increase by 300% annually.

Right: Blue and red lasers reflecting off mirrors -- a glimpse of things to come in computing technology? Photo Credit: Department of Energy/Coherent Inc Laser Group.

Most components now in demand are electro-optical (EO) hybrids, which are limited by the speed of their electronic parts. All-optical components will have the advantage of speed over EO devices, but there is a lack of efficient nonlinear optical (NLO) materials that can respond at low power levels. Almost all current all-optical components require a high level of laser power to function as required.

Researchers from the University of Southern California working with a team from the University of California at Los Angeles have jointly developed an organic polymer with a switching frequency of 60 GHz -- three times faster than the current industry-standard lithium niobate crystal-based devices. Commercial development of such a device could revolutionize the "information superhighway" and speed data processing for optical computing.

Another group at Brown University and IBM Corporation's Almaden Research Center in San Jose, CA, have used ultrafast laser pulses to build ultrafast data-storage devices, achieving switching down to 100ps -- results that are almost ten times faster than currently available "speed limits".

Dr. Steve PaleyLeft: Dr. Steve Paley (NASA/Marshall) discusses the goals of optical computing. Click on the image for a brief RealVideo. The clip is also available in QuickTime format. Free players for QuickTime or RealVideo content are available from the vendors.

A European collaborative effort has demonstrated high-speed optical data input and output in free-space between IC chips in computers at a rate of more than 1 Tb/sec. Astro Terra, in collaboration with Jet Propulsion Laboratory (Pasadena, CA) has built a 32-channel 1-Gigabit per second earth-to-satellite link with a 2000 km range.

(责任编辑:泉水)
顶一下
(19)
100%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
特别推荐
推荐内容