首页 | 家园 | 百科 | 下载 | 书库 | 仪器 | 展会 |人才 | 公司 | 网址 | 问答 | 论坛 | 注册 | 通行证登录 | English

生物行

生物行   进展 | 摘要 | 人物 | 医药 | 疾病 | 技术 | 健康 | 能源   生物航   供应 | 求购 | 公司 | 展会 | 要发布
论坛   神经科学 | 神经系统疾病 | 实验技术 | 求职招聘 | 器材试剂 | 文献检索 | 读书笔记 | 考试招生 | 软件使用
当前位置: 主页 > 科学人物 > 神经生物学家 >

段树民教授简介

时间:2004-03-17 11:38来源:本站原创 作者:admin 阅读:

段树民 SHUMIN DUAN

段树民 院士

中国科学院神经科学研究所研究员,副所长;中国科学院院士,神经科学国家重点实验室主任,全国政协委员。博士生导师,中国科学院“百人计划”获得者。1982年安徽蚌埠医学院毕业,1991年获日本九洲大学医学博士学位。1992-1994在中国科学院上海脑研究所做博士后研究。1995-1996,日本九洲大学世川医学奖学金特别研究员。1996-1999先后在美国夏威夷大学Bekesy神经生物实验室、加州大学旧金山分校神经科学实验室做访问学者。研究兴趣为受体、转运蛋白、离子通道及其信息转导机制。近几年主要研究星形胶质细胞参与神经元信息处理的机理。现承担国家重点基础研究发展规划项目“脑发育和可塑性的基础研究”(2000-2004)。

Principal Investigator 
 
Shumin Duan , Ph.D.

Rm 238, SIBS Building
Institute of Neuroscience
Chinese Academy of Sciences
Shanghai 200031,
China
Email: [email protected]@ion.ac.cn

 姓名 段树民
性别 男
国籍 中国
工作单位、职务:中国科学院神经科学研究所 研究员,副所长;中国科学院院士,神经科学国家重点实验室主任,全国政协委员
单位电话 021-54921818
传真 021-54921735
电子邮箱 [email protected]
学历
1978 年 02 月至 1982 年 08 月 蚌埠医学院,医疗系 医学 学士
1982 年 09 月至 1985 年 08 月 南通医学院 生理学 硕士
1988 年 10 月至 1991 年 03 月 日本九州大学医学部 生理学 博士
工作简历
1985 年 09 月至 1988 年 09 月 南通医学院航海医学研究所 助教,讲师
1992 年 01 月至 1994 年 02 月 中国科学院上海脑研究所 博士后
1994 年 03 月至 1995 年 03 月 南通医学院航海医学研究所 副研究员,所长
1995 年 04 月至 1996 年 04 月 日本九洲大学医学部 世川医学奖学金特别研究员
1996 年 07 月至 1997 年 11 月 美国夏威夷大学 博士后
1997 年 12 月至 1999 年 12 月 美国加州大学旧金山分校神经科 博士后
2000 年 01 月至今中国科学院神经科学研究所 研究员
2007,9 月:神经科学国家重点实验室 主任
2007 年 11 月 中国科学院 院士
2008 年 3 月 全国政协委员
2008 年 11 月 发展中国家科学院(第三世界科学院, TWAS)院士
2009 年 3 月 中国科学院神经科学研究所 副所长
2009年10月 浙江大学医学部主任
学术任职
编委: 《Journal of Neurophysiology》, 《Neurobiology of Disease》,《 Glia》,
《Hippocampus》
《中国科学 C 辑:生命科学》
获奖:
2007 年上海市科技精英
2008 年 何梁何利奖
近年发表论文:
Duan S, Anderson CM, Stein BA, Swanson RA, Glutamate induces rapid
upregulation of astrocyte glutamate transport and cell-surface
expression of GLAST. J Neurosci 19:10193-10200 (1999)
Swanson R.A., Duan S., Regulation of glutamate transporter function
(Review). Neuroscientist, 5: 280-282 (1999)
Duan S, Cooke IM, Selective inhibition of transient K+ current by La3+ in crab
peptide-secretory neurons. J Neurophysiol 81:1848-1855 (1999)
Duan S, Cooke IM, Glutamate and GABA activate different receptors and Cl
(-) conductances in crab peptide-secretory neurons. J Neurophysiol 83:
31-37 (2000)
Anderson CM, Norquist BA, Vesce S, Nicholls DG, Soine WH, Duan S, Swanson
RA. Barbiturates induce mitochondrial depolarization and potentiate
excitotoxic neuronal death. J Neurosci. 22:9203-9209.(2002)
Xiang Y, Li Y., Zhang Z., Wang S., Yuan XB., Wu CP, Poo MM and Duan S*,
Nerve growth cones guidance mediated by G-protein-coupled receptors.
Nature Neuroscience, 5, 843 - 848 (2002) (全国百篇优秀博士论文)
Duan, S, C M. Anderson, E C. Keung, K.Farrell, Y. Chen, and RA. Swanson.
P2X7 Receptor-Mediated Release of Excitatory Amino Acids from Astrocytes.
J Neurosci, 23: 1320-1328 (2003)
Yuan X, Jin, M., Xu, X., Wu, CP., Poo, M., and Duan, S*. Signalling and
crosstalk of Rho GTPases in mediating axon guidance. Nature Cell Biology ,
5, 38 - 45 (2003) (全国百篇优秀博士论文)
Wang, Z., Xu, N., Wu,CP., Duan, S*., and Poo, M. Bidirectional Changes
in Spatial Dendritic Integration Accompanying Long-Term Synaptic
Modifications. Neuron, 37: 463-472 (2003)
Yang, Y., Ge, W., Chen, Y., Wu, CP., Poo, M., and Duan, S*. Contribution
of astrocytes to hippocampal long-term potentiation through release of
D-serine. PNAS, 100, 15194 – 15199 (2003) (2003 年中国医药科技十
大新闻)
Zhang, J. Ye, C., Wu, CP., Poo, M., and Duan, S*. ATP Released by Astrocytes
Mediates Glutamatergic Activity-Dependent Heterosynaptic Suppression.
Neuron, 40, 971-982 (2003) Comment in: O Pascual and PG. Haydon,
Synaptic Inhibition Mediated by Glia. Neuron, 40, 873-875 (2003) (全
国百篇优秀博士论文)
Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, Qian KX, Duan S, Chen
Z, Rao Y, Geng JG. Induction of tumor angiogenesis by Slit-Robo signaling
and inhibition of cancer growth by blocking Robo activity. Cancer Cell.
4:19-29 (2003).
Li, C., Wu, CP., Duan, S*, and Poo, M. Bidirectional Modification of
Presynaptic Neuronal Excitability Accompanying Spike Timing-Dependent
Synaptic Plasticity. Neuron,41, 257–268 (2004)
Xu, H., Yuan, X., Guan, C., Duan, S., Wu, C., and Feng, L. Calcium signaling
in chemorepellant Slit2-dependent regulation of neuronal migration. PNAS,
101, 4296-4301 (2004)
Pan, P., Cai, Q., Lin, L., Lu, P., Duan, S*., and Sheng, Z.
SNAP-29-mediated Modulation of Synaptic Transmission in Cultured
Hippocampal Neurons. J. Biol.Chem. 280: 25769-25779 (2005)
Xu X, Fu AK, Ip FC, Wu CP, Duan S, Poo MM, Yuan XB, Ip NY. Agrin regulates
growth cone turning of Xenopus spinal motoneurons. Development.
132:4309-4316. (2005)
Jin W, Ge WP, Xu J, Cao M, Peng L, Yung W, Liao D, Duan S, Zhang M, Xia
J. Lipid binding regulates synaptic targeting of PICK1, AMPA receptor
trafficking, and synaptic plasticity. J Neurosci. 2006 Mar
1;26(9):2380-90.
Shen WH, Wu B, Dou Y, Zhang ZJ, Duan S* Rapid activity-induced synaptic
maturation mediated by brain-derived neurotrophic factor. Neuorn, 2006,
50: 401-414(封面文章)
Comment in: Atasoy and Kavalali,Presynaptic Unsilencing: Searching
for a Mechanism. Neuron, 2006, 50:345-346
Ge WP, Yang XJ, Zhang ZJ, Wang HK, Deng QD, and Duan S* Long-Term
Potentiation of Neuron-Glia Synapses Mediated by Ca 2+ -Permeable AMPA
Receptors Science, 2006,3 12, 1533-1537 (全国百篇优秀博士论文,2 006
年中国基础研究十大新闻)
Lu W, Zheng BJ, Xu K, Schwarz W, Du L, Wong CK, Chen J, Duan S, Deubel
V, Sun B. Severe acute respiratory syndrome-associated coronavirus 3a
protein forms an ion channel and modulates virus release. PNAS, 2006,
103:12540-12545
Duan S*, Neary J, P2X7/P2Z receptors: properties and relevance to CNS
functions (Invited review). Glia, 2006, 54:738-746.
Ge WP, Duan S*. Persistent Enhancement of Neuron-Glia Signaling Mediated
by Increased Extracellular K+ Accompanying Long-Term Synaptic
Potentiation. J Neurophysiol. 2007, 97: 2564-2569
Yang W, Zheng C, Song Q, Yang X, Qiu S, Liu C, Chen Z, Duan S, Luo J. A
three amino acid tail following the TM4 region of NR2 subunits is
sufficient to overcome er retention of NR1-1a subunit. J Biol Chem. 2007,
282:9269-9278
Zhang X, Xu R, Zhu B, Yang X, Ding X, Duan S, Xu T, Zhuang Y, Han M. Syne-1
and Syne-2 play crucial roles in myonuclear anchorage and motor neuron
innervation. Development. 2007, 134:901-908.
Zhou W, Ge WP, Zeng S, Duan S, Luo Q. Identification and two-photon imaging
of oligodendrocyte in CA1 region of hippocampal slices. Biochem Biophys
Res Commun. 2007 Jan 19;352(3):598-602.
Chen G, Li HM, Chen YR, Gu XS, Duan S* Decreased estradiol release from
astrocytes contributes to the neurodegeneration in a mouse model of
Niemann-Pick disease type C. Glia. 2007, 55:1509-1518.
Wang, C., Zhang, L., Zhou, Y., Zhou, J., Yang, X., Duan, S., Xiong, Z.,
Ding, Y.(2007) Activity-dependent development of callosal projections in
the somatosensory cortex. J. Neurosci. 27: 11334-11342
Z-J Zhang, G Chen, W Zhou, A-H Song, W Wang, T Xu, Q-M Luo, X-S Gu, Duan
S*, Regulated ATP release from lysosomes in astrocytes. Nature Cell Biol
2007, 9: 945-953.
Liao CY, Li XY, Wu B, Duan S*, Jiang GB. Acute enhancement of synaptic
transmission and chronic inhibition of synaptogenesis induced by
perluorooctane sulfonate through mediation of voltage-dependent calcium
channel. Environ Sci Technol. 2008 42:5335-5341
Zheng J, Shen WH, Lu TJ, Zhou Y, Chen Q, Wang Z, Xiang T, Zhu YC, Zhang
C, Duan S, Xiong ZQ. Clathrin-dependent endocytosis is required for
TrkB-dependent Akt-mediated neuronal protection and dendritic growth. J
Biol Chem. 2008,283:13280-13288.
Yu HM, Wen J, Wang R, Shen WH, Duan S, Yang HT. Critical role of type 2
ryanodine receptor in mediating activity-dependent neurogenesis from
embryonic stem cells. Cell Calcium. 2008, 43:417-431.
Li H, Chen G, Zhou B, Duan S*. Actin Filament Assembly by MARCKS- PI(4,5)P2
Signaling Is Critical for Dendrite Branching. Mol Biol Cell. 2008, 19:
4804-4813
Song AH, Wang D, Chen G, Li Y, Luo J, Duan S*, Poo MM. A selective filter
for cytoplasmic transport at the axon initial segment. Cell. 2009,
136:1148-1160.
“*”Corresponding or co-corresponding author.
* 通讯作者
重要国际会议特邀报告:
1. Plenary Lecture: The 9th European Meeting On Glial Cells In Health
and Disease. To be held in 2009, September 8-12, Paris, France
2. 3 rd Annual Canadian Neuroscience Meeting, to be held from May 24-27,
2009, Vancouver, Canada
3. Gordon Research Conference on “ Glial Biology: Functional
Interactions Among Glia & Neurons”, March 15-20, 2009, Ventura, CA
(USA)
4. Gordon Research Conference on “Neurobiology of Brain Disorder ”,
August 24-29, 2008, Oxford, United Kingdom
5. Gordon Research Conference on “Molecular & Cellular Neurobiology ”,
Jun 8-13, 2008, Hong Kong, China
6. Cold Spring Harbor Laboratory Meeting “Glia in Health & Disease”,
July 17 - 21, 2008, Cold Spring Harbor (USA)
7. Gordon Research Conference on “ Glial Biology: Functional
Interactions Among Glia & Neurons”, March 11-16, 2007, Ventura, CA
(USA)
8. Gordon Research Conference on “ Excitatory Synapses and Brain
Function” , June 10-15, 2007,Colby-Sawyer College in New London, New
Hampshire (USA)
9. 2007 Gordon Research Conference on "Neurotrophic Factors", June 17-22,
2007, Salve Regina University in Newport, Rhode Island
10. Symposium in the 7th IBRO WORLD CONGRESS OF NEUROSCIENCE: Purine
mediated neuron-glia interactions: physiological and pathological
relevance (Chair). Melbourne, Australia, 12-17 July, 2007.
11. Plasticity of neuron-glia signalling, The 4th Congress of Federation
of Asian-Oceanian Neuroscience Societies (FAONS), November 30 -
December 2, 2006, Hong Kong
12. 10.Neuron-glia crosstalking in synaptic plasticity and neuronal
signaling integrations. International symposium on Glial Activities
in Neural Plasticity and Information Processing. Jan 2005, Tokyo
13. Gordon Research Conference (GRC), Glial Biology: Functional
Interactions Among Glia and Neurons, March, 2005, Ventura, CA, USA
14. The 20th BIENNIAL MEETING of the International Society for
Neurochemistry (ISN), Symposium: Glial cells as therapeutic targets
for neurological disorders. Aug 2005, Innsbruck, Austria
15. Contribution of astrocytes to neuronal signaling processing, IBRO
Symposium on Neural Plasticity, Development and Repair, April, 2004,
Hong Kong.
主持重要学术会议:
1. Symposium in 10 th SCBA International Symposium: Development and
plasticity of the Nervous system.(Co-chair) July, 2004, Beijing
2. First Chinese Symposium on Glia functions (Chair), Wuhan, China, Oct
17-18, 2005
3. Gordon Research Conference, Molecular & Cellular Neurobiology.
(Section discussion leader: Synaptic Transmission II). Hong Kong,
June 11-16, 2006
4. Symposium in the 7th IBRO WORLD CONGRESS OF NEUROSCIENCE: Purine
mediated neuron-glia interactions: physiological and pathological
relevance (Chair). Melbourne, Australia, 12-17 July, 2007.
5. Cold Spring Harbor Laboratory Meeting “Glia in Health & Disease”
(Discuss leader), July 17 - 21, 2008, Cold Spring Harbor (USA)
 Dr. Shumin Duan is an investigator and head of Laboratory of Synapse Development and Plasticity. He graduated from Bengbu Medical College in 1982 and received his Ph. D. from Kyushu University in Japan in 1991. In 1995-1996 he was awarded a Sasakawa medical senior researcher fellowship and worked at Kyushu University, Japan. He was also a visiting scientist at University of Hawaii and University of California at San Francisco during 1997-99. His recent interests include the role of transmitter receptors and transporters in neuronal signaling functions and the role of astrocytes in synaptogenesis and synaptic plasticity.
 
     
 Guest Investigator: Dr. Jian-hong Luo, Zhejiang University of Neurobiology. 
 Staff & Students:click here 
 
  Research Interests  
 We are interested in the mechanisms underlying synaptogenesis and activity-dependent synaptic plasticity. In particular, we are interested in exploring what roles the glial cells, especially astrocytes, may play in these processes. Although glial cells constitute a large proportion of cells in the brain - from 25% in Drosophila to 90% in human, their potential roles in neuronal functions have not attracted much attention of neuroscientists over the past century. The goal of our research program is to examine the potential roles of glial cells in synaptogenesis and synaptic plasticity, and to understand their underlying cellular and molecular mechanisms.
 
 
 Ongoing Projects  
 
Active role of astrocytes in long-term synaptic plasticity.

Although glial cells have been reported to play important roles in various neuronal functions including neurogenesis, synaptogenesis, and modulating synaptic transmission, it is not clear whether and how glial cells contribute to long-term potentiation (LTP), - a form of synaptic plasticity believed to be a cellular basis for learning and memory. To directly address this issue, we have established two types of hippocampal cultures - neurons cultured on a layer of astrocytes (mixed cultures) or in glia conditioned medium (GCM) without direct contact with astrocytes (GCM cultures). We found that LTP could be evoked in mixed cultures but not in GCM cultures. Further results from both hippocampal slices and cultured neurons indicate that, by providing extracellular D-serine that facilitates activation of NMDA receptors, astrocytes directly supports the induction of LTP. We have also directly recorded astrocyte currents in hippocampal slice in response to stimulation of Schaffer collaterals. Interestingly, induction of LTP in CA1 neurons also induced long-term increase in astrocyte currents in response to Schaffer collateral stimulation(See Fig.1). We are currently examining the underlying mechanisms and its functional significance of the latter form of neuron-glia interaction.

Activity- dependent heterosynaptic modulation mediated by astrocyte released factors.

High levels of neuronal activity have been reported to cause spillover of neurotransmitter to neighboring synapses and induce heterosynaptic modulation via presynaptic receptors, suggesting that neuronal information processing involves not only homosynaptic transmission via activated synaptic connections but also heterosynaptic interactions between adjacent synaptic inputs. Using dual whole-cell recordings from pairs of interconnected hippocampal neurons in mixed cultures and GCM cultures, we found that glutamatergic synaptic activity activates non-NMDA receptors of nearby astrocytes and induces ATP release from these cells, which in turn causes heterosynaptic suppression. Thus, besides the spillover of neurotransmitters from synapses, signaling molecule released from astrocytes, e.g., ATP, can also mediate neuronal activity-dependent heterosynaptic modulation. Such neuron-glia crosstalks may play a role in activity-dependent signal processing and plasticity of neural networks. We are further examining if such neuron-glia crosstalk also exists in more intact tissues, using brain slice preparations(See Fig.1).

Activity-dependent synaptogenesis.

The development of synaptic connections -the formation, elimination, stabilization and maturation of synapses - is shaped by neuronal activity, a process critical for experience-dependent refinement of neuronal circuits. Using a combination of experimental approaches, including electrophysiology, immunochemistry(See Fig.2), GFP-linked gene transfection(See Fig.3), two-photon fluorescence microscopy (See Fig.4), and calcium imaging(See Fig.5), we are studying the trafficking of pre- and postsynaptic molecules induced by neuronal activities in cultured neurons and brain slices. In particular, we are interested in determining whether astrocytes are involved in this neuronal activity-dependent synapse development. We are also interested in studying how 'new' neurons derived from neural stem cells become incorporated into (form synapses with) existing neuronal circuits.

Guidance of Glial Cell Migration.

Growth and migration of glial processes are important not only in neuronal development, e.g., guiding neuronal migration , but also in neuronal degeneration and regeneration, but the underlying mechanisms are largely unknown. We are interested in studying whether glia cell migration and process extension share the same molecules and signal transduction mechanisms with that of neuronal migration and axon guidance, and how guidance of migration and growth of these neurons and glial cells are regulated through their reciprocal interactions.

 
 


More in his webpage!

(责任编辑:泉水)
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
推荐内容