我们热爱生命科学!-生物行
当前位置: 主页 > 生物技术 > 实验室知识

光学分析方法的发展(2)

时间:2006-02-23 15:22来源:教育装备采购网 作者:bioguider 点击: 282次

(三)荧光分析

  当紫外光照射到某些物质的时候,这些物质会发射出各种颜色和不同强度的可见光,而当紫外光停止照射时,这种光线也随之很快地消失,这种光线称为荧光。

  第一次记录荧光现象的是16世纪西班牙的内科医生和植物学家N.Monardes,1575年他提到在含有一种称为“LignumNephriticum”的木头切片的水溶液中,呈现了极为可爱的天蓝色,在17世纪,Boyle(1626—1691)和Newton(1624—1727)等著名科学家再次观察到荧光现象,并且给予更详细的描述。尽管在17世纪和18世纪中还发现了其它一些发荧光的材料和溶液,然而在解释荧光现象方面却几乎没有什么进展。直到1852年Stokes在考察奎宁和叶绿素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍为长些,才判明这种现象是这些物质在吸收光能后重新发射不同波长的光,而不是由光的漫射作用所引起的,从而导入了荧光是光发射的概念,他还由发荧光的矿物“萤石”推演而提出“荧光”这一术语。Stokes还对荧光强度与浓度之间的关系进行了研究,描述了在高浓度时以及外来物质存在时的荧光猝灭现象。此外,他似乎还是第一个(1864年)提出应用荧光作为分析手段的人。1867年,Goppelsröder)进行了历史上首次的荧光分析工作,应用铝—桑色素配合物的荧光进行铝的测定。1880年,Liebeman提出了最早的关于荧光与化学结构关系的经验法则,到19世纪末,人们已经知道了包括荧光素、曙红、多环芳烃等600种以上的荧光化合物。

  20世纪以来,荧光现象被研究得更多了。例如,1905年Wood发现了共振荧光;1914年Frank和Hertz利用电子冲击发光进行定量研究;1922年Frank和Cario发现了增感荧光;1924年Wawillous进行了荧光产率的绝对测定;1926年Gaviola进行了荧光寿命的直接测定等等。

  荧光分析方法的发展,与仪器应用的发展是分不开的。19世纪以前,荧光的观察是靠肉眼进行的,直到1928年,才由Jette和West提出了第一台光电荧光计。早期的光电荧光计的灵敏度是有限的,1939年Zworykin和Rajchman发明光电倍增管以后,在增加灵敏度和容许使用分辨率更高的单色器等方面,是一个非常重要的阶段。1943年Dutton和Bailey提出了一种荧光光谱的手工校正步骤,1948年由Studer推出了第一台自动光谱校正装置,到1952年才出现商品化的校正光谱仪器。

  近十几年来,在其它学科迅速发展的影响下,随着激光、微处理机和电子学的新成就等一些新的科学技术的引入,大大推动了荧光分析法在理论方面的进展,促进了诸如同步荧光测定、导数荧光测定、时间分辨荧光测定、相分辨荧光测定、荧光偏振测定、荧光免疫测定、低温荧光测定、固体表面荧光测定、荧光反应速率法、三维荧光光谱技术和荧光光纤化学传感器等荧光分析方面的某些新方法、新技术的发展,并且相应地加速了各式各样新型的荧光分析仪器的问世,使荧光分析法不断朝着高效、痕量、微观和自动化的方向发展,方法的灵敏度、准确度和选择性日益提高,方法的应用范围大大扩展,遍及于工业、农业、医药卫生、环境保护、公安情报和科学研究等各个领域中。如今,荧光分析法已经发展成为一种重要且有效的光谱化学分析手段。 在我国,50年代初期仅有极少数的分析化学工作者从事荧光分析方面的研究工作,但到了70年代后期,荧光分析法已引起国内分析界的广泛重视,在全国众多的分析化学工作者中,已逐步形成一支从事这一领域工作的队伍。近年来,国内发表的有关荧光分析方面的论文数量增长较快,所涉及的内容也已从经典的荧光分析法逐步扩展到新近发展起来的一些新方法和新技术,在仪器应用方面也陆续有几种类型的国产的荧光分析光度计问世,为这一分析方法的发展和普及提供了一定的物质条件。

(四)原子吸收光度法

  20世纪50年代初又发展出了原子吸收光度法。这是吸收光度法的又一次重大突破。这种方法的初始形式是将试样溶液雾化,喷入火焰,使雾滴溶剂迅速蒸发,形成溶质固体微粒。它很快熔化、挥发,并被热解为组成原子。这时利用一束锐线辐射穿过一定厚度的待测试样蒸气,辐射的一部分便被蒸气中待测元素的基态原子所吸收。对透过的辐射,经单色器后,测定其减弱的程度。这样利用在一定条件下消光度与火焰中原子浓度成正比的关系,求得待测元素的含量。

  原子吸收共振光谱线的性质很早就被观察到。1802年,英国化学家武拉斯顿就曾观察到太阳光谱中存在着许多暗线。对这种现象,英国光学家布鲁斯特(David Brewster,1781—1868)对此作出了科学解释。但是对此现象付诸应用,则是20世纪的事情。

  1953年,澳大利亚物理学家沃尔什(A.Walsh)正式提出利用原子吸收光谱建立新的吸收光度法,并于1954年在墨尔本物理研究所展示出了第一台简单的原子吸收分光光度计。次年,他发表了专题论文《原子吸收光谱在化学分析中的应用》,从理论上探讨了这种方法。在此同时,荷兰化学家阿克马德(J.T.J.Alkemade)也报导了采用原子火焰的吸收实验,指出原子吸收可以做为一个普遍应用的分析方法。到1958年,这种方法便有了实际应用,例如,这年化学家德威得(D.J.Dvid)发表了他用原子吸收法测定植物中锌、镁、铜、铁等元素的实验报告。但在50年代,这种方法主要还仅在澳大利亚进行研究。

  作为原子吸收法的一个关键性问题是如何使待分析物质充分原子化,并形成稳定的原子蒸气。这就需要提高原子化装置的温度。在最初时,沃尔什是将试样作成圆筒状空心阴极,通过放电和阴极溅射而原子化。当时也有人利用火焰光度法中所常用的煤气—空气和丙烷—空气的低温火焰。其后又有人利用氢—空气或乙炔—空气。但对耐高温化合物,这些火焰的温度都嫌不足。到1965年,化学家维利斯(J.B.Willis)提出用乙炔—氧化亚氮火焰;曼宁(D.C.Maning)提出用乙炔—氧化氮火焰,它们的温度皆可高达近3000℃,这样就使测定Be、Al、Si、Ti、Zr、V、Sc、稀土等元素有了可能。1968年和1969年马斯曼(H.Massmann)和苏联科学家吕沃夫(Б.В.Львов)分别研究了石墨管原子化法(非火焰法)。他们将试样放于密闭的石墨管中(两端装石英窗),充以惰性气体,用交流电加热产生原子蒸气,这样既可达到较高的温度,又可使吸收层中没有氧(有利于氧化物试样热解),并且这种装置可以使试样中待测元素都进入吸收光路中,因而提高了分析的绝对灵敏度。1969年威斯特(T.S.West)则提出采用电加热炭丝而使试样原子化的方法,效果也很好。

(责任编辑:泉水)
顶一下
(3)
100%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片