我们热爱生命科学!-生物行
当前位置: 主页 > 生物技术 > 实验室知识

光学分析方法的发展(3)

时间:2006-02-23 15:22来源:教育装备采购网 作者:bioguider 点击: 282次

  作为原子吸收法的另一个关键问题是光源设计。它既需要有高稳定性和强辐射能力,又能发出强烈的待测元素共振线辐射,并且没有自吸收和连续背影。至今原子吸收光度计中最常用的光源是空心阴极灯。在20世纪初,这种光源就被用来研究原子光谱。1955年,克劳斯怀特(H.M.Crosswhite)等发展了这种光源。制造阴极内壁用的材料一般就是高纯的待测元素,对低熔点金属元素,则采用其合金。管中充以氩或氖气。当两极施加电压后,引起阴极溅射,溅射出来的原子再与氩、氖原子或离子碰撞而被激发发光。另外一种光源是充以某些元素蒸气的放电灯。这类元素都是较易挥发的,例如碱金属和汞。 原子吸收光度法因为具有灵敏、快速、简便、准确、经济、适应普通等诸多优点,所以发展极快,只在十几年中就几乎在冶金、化工、地球化学、农业、生化和药物研究各实验室中得到普及。

(五)发射光谱

  发射光谱的发展比其它任何领域都要迅速。早在1920年,它的应用就达到了很高的水平。用于鉴定金属和非金属的实际操作法已获得了发展,这表明除了单质气体、硫和卤素之外所有物质都可以进行普通分析操作。这种技术的灵敏度达到百万分之几,对鉴定痕量杂质非常有用。 定量分析随着底片、仪器和操作手续的规格化变得实际可行了,每种元素的含量都可通过比较不同元素的某些发射谱线的密度来确定。这种比较起初是目视进行的。后来出现了显微光度计,银在底片上沉积的密度就可以精确测量了。定量和定性发射光谱很适合大规模的日常分析操作。小规模的临时光谱操作在解释问题上存在着困难,要花很大的费用;而使用其它某些分析技术却较付钱雇几位解释者要好些,合算些。

  大型工业光谱实验室正越来越倾向于完全自动化地去解释和记录结果。在高分辨率的光谱仪中,光电管安置在待测元素的重要谱线会出现的位置,当发射光通过仪器后,经过适当的放大、计算和记录,几秒钟后就可得到复印的结果记录。这种自动化程度自然需要大量的投资和精心的保养,并且还要限制待分析元素的数目和种类,不能任意改变。然而,在每天都能生产出许多批相似合金的工业操作中,工时和劳力的节省会使这种大型投资较为合算。 主要由中性原子的谱线组成的电弧光谱和主要由离子的谱线组成的火花光谱很久以来就是分析工作的实用光谱。火焰光谱尽管是由较少量的低能跃迁谱线组成,但它完全适用于许多分析工作,特别是碱金属和碱土金属的分析,不过因为他们的谱线又弱又不稳定,所以一般不用于定量分析。 1929年以后,产生了两种操作法,使火焰光谱的应用得到了扩展。拉梅奇介绍过一种火焰法,用来分析土壤提取物和植物灰分,分析中利用了石英喷灯中的氧煤气焰,这种喷灯设计成可使吸饱样品的滤纸卷送入火焰。大约与此同时,伦德加德也发明了一种仪器,把呈细流的溶液引到乙炔—压缩空气火焰里,他自称成功地对32种金属作了定量测定。以上两种方法对铅、锌和汞那样一些金属却不敏感。基于伦德加德原理的火焰光谱仪已有商品出售,它们对钠和钾的日常分析测定特别有用。60年代以后,利用光电倍增管为接受器的多道光谱仪问世,使光谱定量分析的速度和自动化程度大为提高。

(责任编辑:泉水)
顶一下
(3)
100%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片