我们热爱生命科学!-生物行
当前位置: 主页 > 生物技术 > 分子生物学

核酸分子杂交法

时间:2010-09-10 07:22来源:未知 作者:admin 点击: 297次

   这是最早用于性病诊断的重组DNA技术。基本原理是具有一定同源性的两条核酸单链在一定条件下(适宜的温度及离子强度等)可按碱基互补原则形成双链,此杂交过程是高度特异的。杂交的双方是待测核酸及探针。待测核酸序列为性病病原体基因组或质粒DNA。探针以放射核素或非放射性核素标记,以利于杂交信号的检测。

  所谓杂交(hydridization)指两个以上的分子因具有相近的化学结构和性质而在适宜的条件下形成杂交体(hybrid),杂交体中的分子不是来自一个二聚体分子。同一个二聚体中的两个分子在变性解离后重组合称为复性。利用两条不同来源的多核苷酸链之间的互补性而使它们形成杂交体双链叫核酸杂交。与核酸杂交技术相对应的另一项技术被称为探针技术,它是指利用标记分子对其它分子的识别性而实现对后者进行检测的一种技术,我们把标记的分子叫探针(Probe)。将探针技术与分子杂交技术相结合,从而使分子杂交技术得以广泛推广应用。目前所用的核酸杂交技术均应用了标记技术。

  (一)DNA的变性

  DNA变性是指双螺旋之间氢键断裂,双螺旋解开,形成无规则线团,称为DNA变性。加热、改变DNA溶液中的pH,或有机溶剂等理化因素的影响,均可使DNA变性。变性的DNA粘度下降,沉降速度增加,浮力上升,紫外吸收增加。

  (二)DNA复性

  变性DNA只要消除变性条件,二条互补链还可以重新结合,恢复原来的双螺旋结构,这一过程称为复性。复性后的DNA,理化性质都能得到恢复。

  核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价健的形成即出现稳定的双链区,这是核酸分子杂交的基础。杂交分子的形成并不要求两条单链的碱基顺序完全互补,所以不同来源的核酸单链只要彼此之间有一定程度的互补顺序就可以形成杂交双链。分子杂交可在DNA与DNA、RNA与RNA或RNA与DNA的二条单链之间,由于DNA一般都以双链形式存在,因此在进行分子杂交时,应先将双链DNA分子解聚成为单链,这一过程称为变性,一般通过加热或提高pH值来实现。使单链聚合成双链过程称为退火或复性。用分子杂交进行定性或定量分析的最有效方法是将一种核酸单链用同位素标记成为探针,再与另一种核酸单链进行分子杂交。

  (三)探针——靶分子反应

  从化学和生物学意义上理解,探针是一种分子,它带有供反应后检测的合适标记物,并与特异靶分子反应。抗体——抗体、外源凝集素——碳水化合物、亲合素——生物素、受体——配基(Ligand)以及互补核酸间的杂交均属于探针——靶分子反应,蛋白质探针(如抗体)与特异靶分子是通过混合力(疏水离子和氢键)的作用在少数特异位点上的结合,而核酸探针与互补链的反应则是根据杂交体的长短不同,通过氢键几十、几百甚至上千个位点上的结合。这就决定它的特异性。

  基因探针根据标记方法不同可粗分为放射性探针和非放射性探针两大类,根据探针的核酸性质不同又可分为DNA探针、RNA探针、cDNA探针、cRNA探针及寡核苷酸探针等几类。DNA探针还有单链和双链之分。下面分别介绍这几种探针。

  一、核酸探针的种类

  (一)DNA探针

  DNA探针是最常用的核酸探针,指长度在几百碱基对以上的双链DNA或单链DNA探针。现已获的DNA探针种类很多,有细菌、病毒、原虫、真菌、动物和人类细胞DNA探针,这类探针多为某一基因的全部或部分序列,或某一非编码序列。这些DNA片段须是特异的,如细菌的毒力因子基因探针和人类ALU探针,这些DNA探针的获得有赖于分子克隆技术的发展和应用。以细菌为例,目前分子杂交技术用于细菌的分类和菌种鉴定比用G+C百分比值要准确的多,是细菌分类学的一个发展方向,加之分子杂交技术的高度敏感性,分子杂交在临床性病病原体诊断上具有广泛的前景。

  DNA探针(包括cDNA探针)有三大优点:第一,这类探针多克隆在质粒载体中,可以无限繁殖,取之不尽,制备方法简便。其次,DNA探针不易降解(相对RNA而言),一般能有效抑制DNA酶活性。第三,DNA探针的标记方法较成熟,有多种方法可供选择,如缺口平移法、随机引物法、PCR标记法等,能用于同位素和非同位素标记。

  (二)cDNA探针

  cDNA是指互补于mRNA的DNA分子(complementary DNA)。cDNA是由RNA经一种称为逆转录酶的DNA聚合酶催化产生的。携带逆转录酶的病毒侵入宿主细胞后,病毒RNA在逆转录酶的催化下转化成双链cDNA,并进而整合入宿主细胞染色体DNA分子,随宿主细胞DNA复制同时复制,这种整合的病毒基因组称为原病毒。在静止状态下,可被复制多代,但不被表达,故无毒性,一旦因某种因素刺激而被活化,则该病毒大量复制。如其带有癌基因,还可能诱发细胞癌变。

  逆转录现在已成为一项重要的分子生物学技术,广泛用于基因的克隆和表达。从逆转录病毒中提取的逆转录酶也已商品化。最常用的有AMV逆转录酶。利用真核mRNA3′末端存在一段聚腺苷酸尾,可以合成一段寡聚胸苷酸用作引物,在逆转录酶催化下合成互补于mRNA的cDNA链,然后再用RNase H将mRNA消化掉,再加入大肠杆菌DNA聚合酶I催化合成另一条DNA链,即完成了从mRNA到双链DNA的逆转录过程。

  所得到的双链cDNA分子经S1核酸酶切平两端后接一个有限制酶切点的接头(Adapter),再经特定限制酶消化产生粘性末端,即可与含互补末端的载体进行连接。常用的克隆载体是λ噬菌体DNA,如λgt、EMBL和Charon 系列等。用这类载体可以得到包含105以上转化子文库,再经前面介绍的筛选方法筛选特定基因克隆。用这种技术获得的DNA探针不含有内含子序列。因此尤其适用于基因表达的检测。

  (三)RNA探针

  RNA探针是一类很有前途的核酸探针,由于RNA是单链分子,所以它与靶序列的杂交反应效率极高。早期采用的RNA探针是细胞mRNA探针和病毒RNA探针,这些RNA是在细胞基因转录或病毒复制过程中得到标记的,标记效率往往不高,且受多种因素的制约。这类RNA探针主要用于研究目的,而不是用于检测。例如,在筛选逆转录病毒人类免疫缺陷病毒(HIV)的基因组DNA克隆时,因无DNA探针可利用,获得HIV的全套标记mRNA作为探针,成功地筛选到多株HIV基因组DNA克隆。

  随着体外逆转录技术不断完善,已成功的建立了单向和双向体外转录系统。该系统主要基于一类新型载体PSP和PGEM,这类载体在多克隆位点两侧分别带有SP6启动子和T7启动子,在SP6RNA聚合酶或T7RNA聚合酶作用下可进行RNA转录。如果在多克隆位点接头中插入了外源DNA片段,则可以以DNA两条链中的一条为模板转录生成RNA。这种体外转录反应效率很高,在1小时内可合成近10μg的RNA产物。只要在底物中加入适量的放射性或生物素标记的dUTP,则所合成的RNA可得高效标记。该方法能有效地控制探针的长度并可提高标记分子的利用率。

  RNA探针和cDNA探针具有DNA探针所不能比拟的高杂交效率,但RNA探针也存在易于降解和标记方法复杂等缺点。

  (四)寡核苷酸探针

  前述三种探针均是可克隆的,一般情况下,只要有克隆的探针,就不用寡核苷酸探针。在DNA序列未知而必须首先进行克隆以便绘制酶谱和测序时,也常应用克隆探针。克隆探针一般较寡核苷酸探针的特异性强,复杂度也高,从统计学角度而言,较长的序列随机碰撞互补序列的机会较短序列少。克隆探针的另一优点是,可获得较强的杂交信号,因为克隆探针较寡核苷酸探针掺入的可检测标记基因更多。但是,较长的探针对于靶序列变异的识别能力又有所降低。对于仅是单个碱基或少数碱基不配的两个序列,克隆探针不能区分,往往杂交信号相当。这既是其优点,又是其缺点,优点是当用于检测病原微生物时,不会因病毒或细菌DNA的少许变异而漏诊,缺点则是不能用于检测突变点。这种情况,通常要采用化学合成的寡核苷酸探针。

  合成的寡核苷酸探针具有以下特点:第一,由于链短,其序列复杂度低,分子量小,所以和等量靶位点完全杂交的时间比克隆探针短。第二,寡核苷酸探针可识别靶序列内一个碱基的变化,因为短探针中碱基错配能大幅度降低杂交体的Tm值。第三,一次可大量合成寡核苷酸探针,使得这种探针价格低廉,与克隆探针一样,寡核苷酸探针能够用酶学或化学方法修饰以进行非放射性标记物的标记。最常用的寡核苷酸探针长18—40个硷基,目前的合成可有效地合成至少50个碱基的探针。

  对于合成的寡核苷酸探针有以下要求:

  (1)长度以18-50碱基为宜,较长探针杂交时间较长,合成量也低;较短探针特异性较差。

  (2)碱基成分:G+C含量为40%-60%,超出此范围则会增加非特异杂交。

  (3)探针分子内不应存在互补区,否则会出现抑制探针杂交的“发夹”状结构。

  (4)避免单一碱基的重复出现。

  (5)一旦选定某一序列符合上述标准,最好将该序列与核酸库中的核酸序列比较,探针序列应与靶序列核酸杂交,而与非靶区域的同源性不应超过70%或有连续8个或更多的碱基的同源。否则,该探针不能用。

  二、核酸探针的标记和检测

  分子杂交是核酸链以碱基配对规则的一种结合方式,是核酸的重要理化特性。利用分子杂交这一特性来对特定核酸序列进行检测,必须将杂交链中的一条用某种可以检测的进行标记,这条链就称为核酸探针。因此,核酸探针的制备是分子杂交技术的关键。放射性同位素标记是最早采用的也是目前最常用的核酸探针标记方法。常用的放射性同位素有32P和35S。32P因其能量高,信号强,所以最常用。放射性同位素标记探针虽然敏感度高,但却存在辐射危害和半衰期限制(32P半衰期为14.3天,35S半衰期为87.1天,125I半衰期为60天),3H的半衰期长达12.3年,但它所释放β射线的能量太低,只能用于组织原位杂交。由于同位素标记的探针在使用过程中存在着上述缺点,近年来,人们在寻找非放射性标记物方面取得了很大进展。国内已具备生物素类标记物的生产能力,并有相应试剂出售。目前非放射性标记物有下述几类:金属如Hg、荧光物质如F2TC、半抗原如地高辛、生物素、酶类如辣根过氧化物酶(HRP)、半乳糖苷酶或碱性磷酸酶(AKP)等,不同的标记物,所标记探针的方法及检测方法也各异。

  核酸探针的常用酶促标记技术有:缺口平移;DNA快速末端标记;用T4多核苷酸酶标记DNa 5'末端,随引物延伸;聚合酶链反应。

  核酸探针的非放射性标记技术有:光促生物素标记核酸、酶促生物素标记核酸、寡核苷酸的生物素末端标记、酶标DNA、酶标寡核苷酸、DNA半抗原标记。

  三、核酸分子杂交方法

  随着基因工程技术的发展,新的核酸分子杂交技术不断出现和完善,核酸分子杂交可按作用环境大致分为固相杂交和液相杂交两种类型。固相杂交是将参加反应的一条核酸链先固定在固体支持物上,一条反应核酸链游离在溶液中,固体支持物有硝酸纤维素滤膜、尼龙膜、乳胶颗粒、磁珠和微孔板等。液相杂交所参加反应的两条核酸链都游离在溶液中。

  在固相杂交中,未杂交的游离片段可容易地漂洗除去,膜上留下的杂交物容易检测和能防止靶DNA自我复性等优点,所以比较常用。常用的固相杂交类型有:菌落原位杂交、斑点杂交、狭缝杂交、Southern印迹杂交、组织原位杂交和夹心杂交等。

  液相杂交是一种研究最早且操作简便的杂交类型,由于液相杂交后过量的未杂交探针在溶液中除去较为困难和误差较高,所以不如固相杂交那样普遍。近几年由于杂交检测技术的不断改进,商业性基因探针诊断盒的实际应用,推动了液相杂交技术的迅速发展,下面对固相杂交和液相杂交分别进行介绍。

  (一)固相膜核酸分子杂交方法。

  固相核酸杂交多是在膜上进行,因此,以下主要介绍固相膜的核酸分子杂交方法。

  1.DNA的变性解链是杂交成功的关键,Southern印迹杂交时DNA在凝胶中变性,变性方法是将凝胶浸在数倍体积的1.5mol/l  NaCl和0.5mol/L NaOH中1小时,然后用数倍体积的1mol/L Tris-HCl  (pH8.0)和1.5mol/L NaCl溶液中和1小时。DNA受酸、碱、热等处理均能发生变性,但强酸会使核酸降解。碱变性可避免DNA的降解、热变性要在低DNA浓度(100μg/ml)和低盐浓度(0.1SSC 15mmol/L NaOH,1.5mmol/L柠檬酸三钠,pH7.0)下进行。用SSC稀释DNA溶液为50μg/ml,加10mol/l NaOH使最终浓度为0.1mol/L(pH约12.8),室温变性10min,很快置冰盐水中,用10mol/l HC1或5mol/L NaH2PO4调pH到7-8(亦可用碱变性后,调至中性,再加热100℃后,调至中性,或只加热100℃10min)。DNA变性可用OD260增加(约30-40%)来检测,变性DNA醇沉淀呈雪样,完全失去纤维状沉淀。变性后加入等量冷的12×SSC,冰溶保存。

  2.变性DNA在硝酸纤维素膜上的固定。硝酸纤维素滤膜(孔径0.45um)先在蒸馏水中充分浸泡,再用6SSC浸泡30min~2h,凉干,DNA样品转移或加至硝酸纤维素膜上后,先室温干燥4h,然后再在80℃真空干燥2h。

  3.预杂交。湿润的滤膜放入可加热封口的塑料袋中,按每平方厘米膜加0.2ml预热至60℃的预杂交液(6×SSC,0.5%SDS,5×Denhardt液,100μg/ml鲑鱼精DNA)。鲑鱼精DNA需经过剪切和DNA酶消化处理,然后酒精沉淀纯化,调浓度至10μg/ml,用前放100℃水溶液中煮沸变性10min,冰水骤冷。尽可能将袋中气泡赶尽,用封口器将袋口封住。将杂交袋浸入68℃水浴中保温3-12h,当预杂交液温度升至68℃时,在滤膜表面常会形成水气泡,轻轻晃动袋中液体即可除去这些小气泡,这一点对于保证滤膜表面充分浸润预杂交液很重要。

   4.杂交。 从水浴中取出塑料袋,用剪刀剪开一角,尽可能挤净预杂交液,用吸管或大枪头将杂交液加入袋中,用恰好足量的液体保持滤膜湿润(50ul/cm2)。溶液的组成是6×SSC,0.01mol/L EDTA,变性的标记核酸探针,5×Denhardt液,0.5%SDS,100mg/ml变性的鲑鱼精DNA。尽可能赶尽气泡后,将塑料袋严密封口。杂交反应在68℃水浴中进行,所需时间视探针和检测靶DNA的性质及探针的比活性等情况而定,一般为4-20h。

   5.洗膜。取出塑料袋,用剪刀剪开,小心取出滤膜,立即浸入盛有2×SSC和0.5%SDS溶液的盘中,室温下漂洗5min,再将滤膜移入2×SSC和0.1% SDS中,室温下洗涤15分钟(轻轻摇动),然后将滤膜移入0.1%×SSC和0.5%×SDS溶液中,68℃轻轻摇动保温2h,更换缓冲液后继续保温30min。

  洗脱的温度一般应控制在Tm值12℃以下,[Tm=69.3+0.41×(G+C)%],双链DNA的Tm值随错配碱基对数每增加1%而递减1℃

   6.结果显示。放射性测定方法,固相膜的放射性杂交结果显示有两种方式,一是放射自显影法、另一是液闪计数法,放射自显影法比较简单,只需将杂交膜与X光片在暗盒中暴光数小时至数天,再显影,定影即可。对于杂交信号较强的固相膜,用一块增敏屏可显著增强暴光强度。此外,为了减弱32P的放射,暴光通常在-20℃-80℃下进行。液闪计数法主要用于斑点和狭缝杂交及为了比较两个杂交信号的强弱等情形,方法是将完成杂交的膜在漂洗结束后剪成小块(每份样品1块),80℃真空干燥后装闪烁瓶,加入2—5ml闪烁液,剪2-3块无样品作为本底对照,在液体闪烁计数器上自动计数,液体计数测定放射性强度也可以在放射自显影之后进行。

  (二)固相核酸分子杂交类型

  1.菌落原位杂交(colony in situ hybridization)。是将细菌从一主平板转移到硝酸纤维素滤膜上,然后将滤膜上的菌落裂菌以释放出DNA,将DNA烘干固定于膜上与32P标记的探针杂交,放射自显影检测菌落杂交信号、并与主平板上的菌落对位。

  实验步骤如下:

  ①将硝酸纤维素滤膜置于含抗生素的平皿琼脂培养基上,用无菌牙签挑取单菌落种于滤膜和主琼脂平板上,排列成方格栅,膜和板上菌落位置相同。

  ②培养细菌至产生1-2mm大小的菌落。

  ③在一块平皿中置4张滤纸,用10%SDS浸透,倒掉多余液体,将带有菌落的滤膜取下轻轻置于滤纸上,菌落面在上,注意防止滤膜底面存有气泡。

  ④5min后,将滤膜转至用变性溶液(0.5mol/L NaOH,1.5mol/LNaCl)浸湿的滤纸上,放置10min。

  ⑤将滤膜转至中和溶液(1.5mol/l NaCl, 0.5mol/L Tris-HCl pH8.0)浸湿的滤纸上,放置10min,重复中和一次。

  ⑥将滤膜移至用2×SSPE溶液浸过的滤纸上,放置10min,SSPE配成20×贮备液:3.6mol/l NaCl,0.2mol/L NaH2PO4(pH7.4),20mmol/L EDTANa2(pH7.4)。

  ⑦将滤膜用滤纸吸干,80℃真空烘干2h。

  2.斑点杂交(Dot blot)。是将被检标本点到膜上,烘烤固定。这种方法耗时短,可做半定量分析。一张膜上可同时检测多个样品,为使点样准确方便,市售有多种多管吸印仪(Manifold),如MinifoldⅠ和Ⅱ、Bio-Dot(Bio-Rad)和Hybri-Dot,它们有许多孔,样品加到孔中,在负压下就会流到膜上呈斑点状或狭缝状。反复冲洗进样孔,取出膜烤干或紫外线照射以固定标本,这时的膜就可以进行杂交。

  (1)DNA斑点杂交:

  ①先将膜在水中浸湿,再放到15×SSC中。

  ②将DNA样品溶于水或TE,煮沸5min,冰中速冷。

  ③用铅笔在滤膜上标好位置,将DNA点样于膜上,每个样品一般点5μl(2~10μg DNA)。

  ④将膜烘干,密封保存备用。

  (2)RNA斑点杂交:与上法类似,每个样品至多加10μg总RNA(经酚/氯仿或异硫氰酸胍提取纯化),方法是将RNA溶于5μl DEPC水,加5μl甲醛/SSC缓冲液(10×SSC中含6.15mol/L甲醛),使RNA变性,然后取5-8μl点样于处理好的滤膜上,烘干。

  (3)完整细胞斑点杂交:应用类似检测细菌菌落的方法,可以对细胞培养物的特异序列进行快速检测,将整个细胞点到膜上,经NaOH处理,使DNA暴露、变性和固定,再按常规方法进行杂交与检测。有人曾用此法从105个培养细胞中检测到至少5pg的Epstein-Barr病毒DNA。完整细胞斑点印迹法可以用于筛选大量标本,因为它使细胞直接在膜上溶解,所以DNA含量甚至比常用的提取法还高,又不影响与32P标记的探针杂交,但它不适用于非放射性标记探针,因为DNA纯度不够,会产生高本底。

  3.Southern印迹杂交(Southern blot)。是研究DNA图谱的基本技术,在遗传病诊断、DNA图谱分析及PCR产物分析等方面有重要价值。Southern印迹杂交的基本方法是将DNA标本用限制性内切酶消化后,经琼脂糖凝胶电泳分离各酶解片段,然后经碱变性,Tris缓冲液中和和高盐下通过毛吸作用将DNA从凝胶中转印至硝酸纤维素膜上、烘干固定后即可用于杂交。凝胶中DNA片段的相对位置在DNA片段转移到滤膜的过程中继续保持着,附着在滤膜上的DNA与32P标记的探针杂交,利用放射自显影术确立探针互补的每一条DNA带的位置,从而可以确定在众多消化产物中含某一特定序列的DNA片段的位置和大小。

  (1)琼脂糖凝胶电泳。利用琼脂糖凝胶电泳可以很容易地将DNA限制酶消解片段(0.3~25kb)分离开,分离大分子DNA片段(800-12000bp)用低浓度琼脂糖(0.7%),分离小分子片段(500~1000bp)用高浓度琼脂糖(1.0%),300-5000bp的片段则用1.3%的琼脂糖凝胶。根据分离样品品质,分离速度和分辨率要求的不同,可选用不同规格的电泳槽。

  电泳时,同时将分子量标记物加到旁边孔中,便于确定样品DNA的分子量。20伏恒压电泳过夜,电泳完毕,将胶浸到含0.5μg/ml EB的TBE缓冲液中染色30min,也可将EB直接加到电泳缓冲液中或在灌胶前加入胶片中,在254nm短波透射灯下拍照,加橙黄色滤色镜,使用高速一次成像胶片,光圈f4.5,曝光20-40s。

  (2)硝酸纤维素膜吸印。

  [1]将胶片切成合适大小,切去右上角作为记号。

  [2]将胶片放进盛有变性缓冲液(1.5mol/l NaCl,0.5mol/L NaOH)的盘中轻晃15min。

  [3]换到中和缓冲液(1mol/l Tris-HCl,pH8.0,0.15mol/L NaOH)的盘中轻晃30min。

  [4]裁一张硝酸纤维素膜、2-4张3mm滤纸和一些吸印纸(可用卫生纸),都与胶的大小相同(硝酸纤维素膜和吸印纸不能比胶大,否则易形成旁路)。先将硝酸纤维素膜浸到水中,再放入10×SSC缓冲液,接触胶和硝酸纤维素膜时都要戴手套操作。

  [5]平盘上放一块比胶大的平板上面铺一张3mm滤纸,起灯蕊作用,盘中加入少量10×SSC缓冲液(2.5cm厚),不能没过平板,使3mm滤纸充分饱和。

  [6]将胶倒扣在3mm滤纸上。

  [7]浸湿的硝酸纤维素膜在胶上,对齐。铺膜时从一边逐渐放下,防止产生气泡,有气泡时,可用吸管赶出,不能让膜与胶下的滤纸直接接触。

  [8]膜上放一张3mm滤纸,不能与胶接触。

  [9]上面加吸印纸及重物(500g左右)。

  [10]通过滤纸的灯芯作用,平盘中的缓冲液就会通过胶上移,从而将DNA吸印到膜上,及时更换浸湿的吸印纸,在室温下转印过夜。

  [11]清除上面的东西。用镊子将膜取出,在6×SSC中洗一下。

  [12]自然干燥,80℃烤2h。

  [13]这是的膜就可进行杂交,或室温密封保存。 (责任编辑:泉水)

顶一下
(0)
0%
踩一下
(1)
100%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
特别推荐
推荐内容