我们热爱生命科学!-生物行
当前位置: 主页 > 神经科学 > 研究进展

2017年7月Cell期刊不得不看的亮点研究

时间:2017-07-31 16:56来源:生物谷   作者:未知 点击: 139次

7月份即将结束了,7月份Cell期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。

1.Cell:中科院生物物理所王艳丽/章新政课题组从结构上揭示Cas13a切割RNA机制
doi:10.1016/j.cell.2017.06.050

2017年7月Cell期刊不得不看的亮点研究

图片来自Cell期刊。

作为一种VI-A型CRISPR-Cas系统的一种RN引导的RNA核酸酶,Cas13a降解crRNA靶向的入侵性RNA,在RNA技术中具有广泛的潜在应用。

如今,在一项新的研究中,为了理解Cas13a如何被激活和切割靶RNA,中科院生物物理所中国科学院核酸生物学重点实验室创新课题组组长王艳丽(Yanli Wang)课题组和中科院生物物理所生物大分子国家重点实验室创新课 题组组长章新政(Xinzheng Zhang)课题组解析出来自口腔纤毛菌(Leptotrichia buccalis)的Cas13a(以下称LbuCas13a)结合到crRNA和它的靶RNA上时的晶体结构,以及LbuCas13a-crRNA复合物的冷冻电镜结构。他们证实 crRNA-靶RNA双链结合到LbuCas13a中的核酸酶叶(nuclease lobe, NUC)的一种带正电荷的中心通道内,而且一旦结合靶RNA,LbuCas13a和crRNA经历显著的构象变化。这种crRNA-靶RNA双链形成促进LbuCas13a的HEPN1结 构域移向HEPN2结构域,从而激活LbuCas13a的HEPN催化位点,随后LbuCas13a就以一种非特异性的方式切割单链靶RNA和其他的RNA。

这些发现揭示出VI型CRISPR-Cas系统的Cas13a抵抗RNA噬菌体的作用机制,这就为将它作为一种RNA操纵工具加以应用铺平道路,如将它的RNA切割和附带切割活性用于基础研究、诊断和治疗。

2.Cell:揭示出与抑郁症状相关联的大脑回路
doi:10.1016/j.cell.2017.06.015

在一项新的研究中,来自美国加州大学圣地亚哥分校的研究人员将大脑中的特定回路与抑郁的不同行为症状相关联在一起。他们发现与绝望和无助的感觉相关联的大脑回路,并且能够在小鼠研究中缓解和甚至逆转这些症状。相关研究结果发表在2017年7月13日的Cell期刊上,论文标题为“Distinct Ventral Pallidal Neural Populations Mediate Separate Symptoms of Depression”。

这些研究人员采用了几种工具来追踪参与特定行为的大脑通路和特定神经元区域,这些工具包括成像技术和社交策略行为模型。他们在大脑的腹侧苍白球区域(基底神经节的一部分)中鉴定出两个神经元群体是导致抑郁行为的关键。

这项新的研究发现对表现出抑郁症的小鼠中的这两个神经元群体中的通路进行特异性修饰会导致改善的行为变化,从而表现得更加类似于健康的小鼠。更为重要的是,这项研究为理解抑郁中的几个大脑区域之间的相互作用提供强大的见解。之前的研究主要关注某些大脑区域在社交孤立中发挥的作用。在这项新的研究中,这些研究人员能够研究多种大脑区域之间的连接性和一个大脑区域如何影响另一个大脑区域。

3.Cell:蛋白Mcr调节相邻细胞中的自噬
doi:10.1016/j.cell.2017.06.018

2017年7月Cell期刊不得不看的亮点研究

图片来自Cell, doi:10.1016/j.cell.2017.06.018

根据一项新的研究,来自美国马萨诸塞大学医学院等相关研究机构的研究人员发现在果蝇相邻细胞之间部署的一种免疫相关蛋白在一种被称作自噬的细胞降解过程中扮演着重要的角色。这种胞外的分子关联提出了一种免疫系统信号和自噬之间发生通信故障可能导致人类疾病产生的可能性。相关研究结果发表在2017年6月29日的Cell期刊上,论文标题为“Complement-Related Regulates Autophagy in Neighboring Cells”。

通过关注果蝇唾液腺发育(当果蝇发育成熟时,它的唾液腺会被降解掉),并且分离和研究自噬组分,Baehrecke指出在细胞死亡之前,在果蝇唾液腺中的Mcr蛋白水平上升在某种程度上与这种唾液腺降解存在关联。当Baehrecke和同事们在果蝇唾液腺细胞中关闭Mcr基因时,与自噬发生故障相关的片段出现了,这表明Mcr在通过激活自噬清除细胞碎片中发挥着作用。

Mcr基因是补体系统的一部分;它增加抗体和吞噬细胞清除有机体中的微生物和受损细胞的能力,促进炎症产生和攻击病原体的质膜。马萨诸塞大学医学院分子、细胞与癌症生物学教授Eric H. Baehrecke博士和同事们也证实Mcr与位于相邻细胞外表面上的Draper受体相互作用。他们还证实Mcr和Draper之间的这种相互作用对这种炎性反应是至关重要的,这是因为它触发巨噬细胞被招募到上皮伤口位点。

4.Cell:为何免疫系统检测不到癌症?
doi:10.1016/j.cell.2017.06.016

癌症隐藏在免疫系统的视线之下。当癌细胞出现时,身体的天然肿瘤监控程序应当能够检测和攻击它们,而且仅当这些防御系统都失效时,癌症才能茁壮成长。在一项新的研究中,来自美国布莱根妇女医院的Niroshana Anandasabapathy博士和他的团队在30种在人外周组织(peripheral tissue)内发生的癌症(包括黑色素瘤皮肤癌)中发现一种至关重要的可能被一些癌症用来伪装自己的策略(即一种遗传程序)。相关研究结果发表在2017年6月29日的Cell期刊上,论文标题为“IFNγ-Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment”。

Anandasabapathy团队研究了单核吞噬细胞,即一群作为免疫系统的“吃豆人(Pac man)”发挥作用的免疫细胞。当单核吞噬细胞检测到外来入侵者和死亡的正常组织时,这些细胞吞食它们的组分。它们随后将这些组分展示在它们的表面上,从而教导T细胞保持对健康组织的耐受性,或者抵抗感染和病原体。尽管在皮肤(一种类似于肺部和肠道的外周组织)中发现的所有单核吞噬细胞在功能上存在差异,但是它们都具有相同的一套遗传编程,而且当它们进入这种组织中时,这套遗传编程会得到进一步强化。这种遗传程序在胎儿和成体发育时是保守的,而且在不同物种中也是保守的。

Anandasabapathy团队发现这种遗传程序是由来自γ-干扰素(IFNγ)的“有益线索(instructive cue)”诱导产生的。IFNγ分子在调节免疫中发挥着非常重要的作用。他们在单核吞噬细胞发育过程中发现IFNγ,但是相比于健康的皮肤,IFNγ和组织免疫特征在皮肤癌中存在更高的水平。利用IFNγ和组织免疫特征进行衡量的免疫反应与改善的转移性黑色素瘤存活结果相关联,这就使得这些特征成为癌症存活的潜在生物标志物。

5.Cell:逆转T细胞精疲力竭改进抵抗癌症和病毒感染的免疫疗法
doi:10.1016/j.cell.2017.06.007

在一项新的研究中,来自美国圣犹大儿童研究医院的研究人员发现T细胞如何变得“精疲力竭(exhausted)”,即不能够攻击癌细胞或病毒等入侵者。这一发现是重要的,这是因为接受癌症免疫疗法治疗的病人经常是没有反应性的或者经历疾病复发,而且有人已提出这些挑战可能归咎于T细胞精疲力竭。在研究病毒感染或肿瘤的临床前模型系统中,他们发现一种已在使用的化疗药物能够逆转这种精疲力尽。这些发现为开发更加强效的和持久的免疫疗法提供一种新的途径。相关研究结果发表在2017年6月29日的Cell期刊上,论文标题为“De Novo Epigenetic Programs Inhibit PD-1 Blockade-Mediated T Cell Rejuvenation”。论文通信作者为圣犹大儿童研究医院免疫学家Ben Youngblood博士。

Youngblood团队报道这些发现解释了一种被称作免疫检查点阻断(immune checkpoint blockade)的免疫疗法为何经常会失效。在这种治疗中,病人接受一种药物治疗,移除对他们的T细胞的抑制,从而允许它们杀死病毒感染细胞或肿瘤细胞。这些抵抗肿瘤的T细胞检测癌细胞表面上的一种蛋白抗原,从而触发这种攻击。Youngblood说,在这类免疫疗法中,T细胞精疲力竭是成功治疗的一个重大的障碍。

6.Cell:2型糖尿病产生新发现!SLC16A11基因变异通过两种不同的机制破坏其在肝细胞中的功能
doi:10.1016/j.cell.2017.06.011

2017年7月Cell期刊不得不看的亮点研究

图片来自Cell, doi:10.1016/j.cell.2017.06.011

在对早前的针对拉丁美洲人的2型糖尿病(type 2 diabetes, T2D)全基因组关联研究(GWAS)中的发现进行跟踪研究后,来自美国布罗德研究所和麻省总医院等研究人员将这项研究中检测到的一种关联性追踪到一个特定基因(即基因SLC16A11)的变异体上,并且发现这些变异体利用两种不同的机制破坏该基因在肝细胞中的功能,从而可能导致T2D产生。这些发现对T2D的生物学性质提供新的认识,并且为开发治疗这种疾病的药物提供新的线索。相关研究结果发表在2017年6月29日的Cell期刊上,论文标题为“Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms”。论文通信作者为布罗德研究所代谢项目联合主任、哈佛医学院副教授、麻省总医院糖尿病部门主任Jose Florez和布罗德研究所创始主任Eric Lander。论文第一作者为布罗德研究所前哈佛医学院研究生(如今在Jnana治疗公司任职)Victor Rusu和布罗德研究所博士后研究员Eitan Hoch。

作为美洲基因组医学瘦身计划(Slim Initiative in Genomic Medicine for the Americas)2型糖尿病联盟(Slim Initiative in Genomic Medicine for the Americas T2D Consortium)的一部分,布罗德研究所糖尿病研究组的研究人员猜测这种影响的不一致性可能有助揭示这种疾病的遗传学基础,并且与早前的全基因组关联研究(GWAS)的合作机构携手从来自墨西哥和美国的9000多名拉美裔人的DNA样品中发现了T2D的遗传决定因子。之前的研究关注欧洲裔人群。

这些研究人员在此之前并不知道SLC16A11发挥什么作用,在何处发挥作用。SLC16A11属于一个已知转运分子通过细胞膜的基因家族,但是这些基因产生的蛋白能够在体内发挥着许多不同的作用,它们能够在一些组织中是有活性的,但在其他的组织中是没有活性的。他们不仅必须知道SLC16A11如何在正常情形下发挥功能,而且还需确定这个基因发生的突变如何破坏这种功能。特别地,他们需要确定“影响方向(direction of effect)”:基因活性是增加还是下降?理解这种功能将会针对这个基因在T2D中的潜在作用提供至关重要的线索。

通过一系列测试,这些研究人员发现SLC16A11基因发生的突变通过两个不同的机制改变基因活性,而且都是按照相同的“影响方向”破坏这个基因的功能。SLC16A11基因中的一些变异仅是降低它在肝脏(作为一种器官,肝脏有助调节血糖水平,因而参与T2D产生)中的表达。这个基因中的其他变异破坏与另一种被称作基础免疫球蛋白(basigin, BSG)的蛋白之间的相互作用。这种破坏改变SLC16A11在细胞中的位置,阻止BSG蛋白发挥着一种转运体的作用,从而影响脂肪在肝脏中的处理方式。

7.Cell:重大突破!发现一类新的小RNA分子保护哺乳动物基因组
doi:10.1016/j.cell.2017.06.013

我们的基因组是雷区,散布着潜在破坏性的DNA序列,不过在这些DNA上,存在着数以十万计的哨兵在站岗。这些被称作表观遗传标记的哨兵在这些位点上附着到DNA双螺旋上,阻止这些DNA序列发挥着它们的破坏性作用。

如今,在一项新的研究中,来自美国冷泉港实验室(CSHL)的研究人员发现可能作为这些哨兵的应急替换,突击队仅在这些非常毫无防备的时刻才被强征在整个基因组中服役。特别地,在哺乳动物胚胎被植入母体子宫壁中之前,这些临时的保护者在哺乳动物胚胎发育的一个非常早期的期间保护它们的基因组。相关研究结果发表在2017年6月29日的Cell期刊上,论文标题为“LTR-Retrotransposon Control by tRNA-Derived Small RNAs”。论文通信作者为冷泉港实验室教授Rob Martienssen。论文第一作者为Martienssen实验室博士后研究员Andrea Schorn博士。

这种植入前胚胎是表观遗传标记在重新写入之前被擦除的两种情形之一。另一种情形是生殖细胞(卵子和精子)形成的一个步骤,已知在这种情形下,具有被称作piwi蛋白相互作用RNA(piwi-interacting RNAs, piRNA)的临时保护者。这项新的研究证实在植入前胚胎中,另一种小RNA类型在它的表观遗传重编程期间发挥着一种类似的基因组保护作用。

这些新鉴定出的保护者具有两种类型:长18nt的RNA片段和长22nt的RNA片段。Schorn发现这些RNA片段与逆转录转座子中的序列完全互补,而且为了激活这种寄生性序列元件,这种互补性序列必须参与进来。

Schorn仔细地分析了小鼠胚胎干细胞的内含物,发现很多自由漂浮的长18nt的RNA片段。计算机分析揭示出它们的序列与转移RNA(tRNA)中的序列完全匹配。tRNA普遍存在,并且参与蛋白合成。几十年来,人们就已知道tRNA被长末端重复序列(long terminal repeat, LTR)-逆转录转座子(LTR- RetroTn)劫持,LTR- RetroTn序列的一部分停靠在引物结合位点(primer binding site, PBS)上,启动一种激活LTR- RetroTn的过程。LTR- RetroTn也被称作内源性逆转录病毒。

8.Cell:重大突破!首次从结构上揭示CRISPR-Cas3系统作用机制
doi:10.1016/j.cell.2017.06.012

2017年7月Cell期刊不得不看的亮点研究

图片来自Cell,doi:10.1016/j.cell.2017.06.012

(责任编辑:泉水)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
特别推荐
推荐内容