我们热爱生命科学!-生物行

第二节 衰老机理研究进展(2)

时间:2006-07-22 21:30来源:大众医药网 作者:admin 点击: 706次

  与核DNA(nDAN)相比,mtDNA的特殊性有:(1)mtDNA裸露无组蛋白保护且缺乏有效的修复系统,因此其突变率远高于nDNA(约为其10~100倍)并且在细胞内不断积累;(2)mtDNA具有极其经济的基因排列,既无内含子又有部分区域基因重复使用,因此任何突变都可能成为造成重要功能缺陷的病理性突变,但由于其异质性,突变型和正常型mtDNA拷贝数比值需达到一定阈值时才导致出现异常临床症状、体征。

  近年来,mtDNA突变相关疾病不断地发现,但突变类型大致可分为碱基替换突变和重组突变两种。如果从突变的细胞系来看又可分为生殖细胞系突变和体细胞系突变。

  1.生殖细胞系突变

  mtDNA主要为母系遗传,所以,这里的生殖细胞系突变主要指女性生殖细胞系突变,任何可能发生的mtDNA突变均可涉及人类女性生殖细胞系,其中以碱基替换突变最为常见。

  生殖细胞内mtDNA发生突变后出现下述过程:当生殖细胞内mtDNA发生突变时,可造成细胞内突变型与野生型mtDNA同时存在(即异质体),随后,突变型与野生型mtDNA通过减数分裂和有丝分裂随机分布到子代细胞中,结果细胞中突变型与野生型mtDNA的比例发生随机增减(称为遗传漂变),最后,再分裂的子代细胞有朝着全部为突变型或全部为野生型mtDNA(即同质体)的方向发展的趋势,这一过程称为“复制分离”。

  随着复制分离和遗传漂变的发生,一些mtDNA中“中性突变”(对机体无害也无益、选择作用不明显的突变)可以建立起同质体而以一定频率保留于人群中,形成mtDNA某些区段的多态性。与之相反,重度有害突变因复制分离造成的同质体个体发病早,极易随自然选择而消除,很少成活下去,所以多数重度有害突变无法建立起同质体,其发病者多为新出现的异质体表型,介于上述二者之间的为轻度有害突变,它对繁殖后代影响不很严重,可在人群中建立起低频度多态性,但这些个体因具有氧化磷酸化(OSPHOS)能力的缺陷而过早发生退行性疾病。

  近年来研究已经发现某些疾病与mtDNA碱基替换突变有关。如Lerbe氏遗传性视神经病(Lerbe’s hereditary optic neuropathy)是mtDNA第11778位G转为A面使NADH脱氢酶第四亚单位ND4的第340位精氨酸残基被组氨酸残基取代,还有多个位点的突变对本病的发生起作用。又如线粒体脑肌病(mitochondrial mypathy,encephalopathy)伴高乳酸血症(lctic acidosis)和卒中样发作(stroke-like episodes)患者和成年型糖尿病伴耳聋患者,其mtDNA发生tRNALeu基因第3242位A→G替换突变。

  2.体细胞系突变

  体细胞系mtDNA突变与氧自由基损伤关系密切。呼吸链反应(呼吸爆发)是产生氧自由基的重要来源,线粒体正是这一过程的重要场所,而且mtDNA缺乏修复能力,所以,mtDNA很易被自由基损伤并不断积累。年龄相关的体细胞mtDNa 突变的积累与随增龄而出现的OXPHOS能力下降密切相关。

  体细胞系mtDNA突变即可能是碱基替换突变也可能是重组突变,重组突变又以片段缺失最为多见,缺失片段的长度及占总mtDNA的量决定了其产生影响的大小。近年来发现的mtDNA缺失类型已有十几种,不同的缺失类型有不同的组织特异性,其中骨骼肌、脑、心肌等是发生缺失较多的组织。有资料表明,mtDNA缺失突变引起的疾病常常是散发的,无家族史的,发病率随年龄而增加,这从反面说明了mtDNA缺失突变多为体细胞突变。

  体细胞系mtDNA突变与生殖细胞系mtDNA突变所产生的生理效应相加,如被遗传的有缺陷的mtDNA越少,则引起发病所需体细胞mtDNA的损伤就越多,由此引起有关的器官衰竭所要求的mtDNA损伤积累需要的时间也越长;反之亦然。也就是说,年龄相关的mtDNA突变的积累所致的分裂后组织的OXPHOS功能的渐进性丧失会增加遗传缺陷所造成的OXPHOS缺陷,这可能是造成某些线粒体疾病晚发病及渐进性加重的原因之一。

  (二)mtDNA突变与衰老及与年龄相关的退行性疾病的关系

  体细胞系mtDNA突变的积累与人类组织器官(脑、心肌、骨骼肌、皮肤、肝、卵母细胞及精子等)衰老、机体衰老及许多老年性退行性疾病密切相关,Wallace等发现,40多岁的正常人的心脏及脑有5kb、7.4kb片段缺失,缺失频率随增龄而增加。许多资料证明,mtDNA突变随增龄而积累,机体寿命与基础代谢率呈反比而与氧自由基清除率呈正比。这均说明随增龄而OXPHOS功能的下降可能是mtDNA氧化损伤积累的结果。

  1.MtDNA突变与老年心血管疾病

  在心血管疾病方面,已经发现扩张性心肌病和肥厚性心肌病均存在mtDNA片段缺失和点突变,有的甚至可见多个片段缺失,缺失常位于ATPase6和D环区的7.4kb片段缺失。研究提示mtDNA突变与衰老、心肌缺血、老年心衰及“老年心脏”等老年性心脏疾病的发生有关,主要是mtDNA片段的缺失。衰老心肌中mtDNA片段缺失和OXPHOS中酶活性下降可能导致自由基介导的脂类过氧化反应加速,这可能是形成动脉粥样硬化斑块的原因之一。

  2.MtDNA突变与老年中枢神经系统的退行性改变及疾病

  中枢神经系统的退行性改变及疾病是老年人的常见疾病。研究资料提示Parkinson病(PD)、Alzheimer病(AD)和Huntington病(HD)是中枢神经系统与OXPHOS缺陷关系最为密切的几种退行性疾病,均有不同程度的mtDNA突变。

  PD是一组以运动失调为主的临床综合症,其黑质纹状体内多巴胺神经元变性是主要病理特征。研究发现PD患者脑细胞呼吸链复合物I活性下降,黑质尤为明显,其复合物I的mtDNA编码亚单位减少。患者mtDNA有5.0kb片段缺失,发生率约为对照组的10倍,而且,不论患者的脑组织还是肌组织其约粒体均存在异质体,这提示当缺失型mtDNA数量超过一定阈值时才会发症。

  AD是一类以渐进性痴呆和脑皮质萎缩为主要特征的老年性疾病。许多研究曾集中于β-淀粉样前体蛋白的基因突变与β-淀粉样前体蛋白成份的异常,但这类病例只占患者的很少一部分。目前的研究表明mtDNAT突变和OXPHOS缺陷可能是该病的一个重要原因。Parker等(1992)发现6例AD患者中5例存在复合物IV的OXPHOS缺陷。也有研究发现AD患者脑新皮质匀浆中存在OXPHOS偶联缺陷并有mtDNA点突变及缺失突变,因此,AD的发展在某种程度上与mtDNA突变及OXPHOS缺陷有关,其中包括触小体的退行性变。

  HD是以成年期发病的运动失调和渐进性痴呆为主要特征的常染色体显性遗传病,病理特点是基底神经节的退行性变。在HD患者脑中发现豆状而非皮质中复合物IV的缺陷,血小板线粒体有复合物I的缺陷。HD表现一定的母系遗传化倾向。这些资料表明,HD的发生、发展可能与mtDNA突变有关。

  3.MtDNA突变与非胰岛素依赖型糖尿病

  非胰岛素依赖型糖尿病是一种年龄相关性疾病,是老年人最常见的一种内分泌系疾病。本病也出现退行性疾病特征,其发病与线料体OXPHOS功能缺陷有密切关系。线粒体的OXPHOS在葡萄糖诱导胰岛β细胞分泌胰岛素过程中起重要作用。研究表明,成年期糖尿病患者存在mtDNA的异质均有异质体10.4kbmtDNA片段缺失,缺失位于4389-14812位点之间,缺失部分包括L链起点(O2)和除rRNa 、ND1部分cytb和相邻的RNA外的所有mtDNA编码基因。缺失后的mtDNA分子小因而具有自制优势,易于在细胞内聚积而使异质体达到阈值效应。

  由于编码呼吸链的一些基因缺失,故OXPHOS功能逐渐下降,能量来源表现不足,胰岛分泌能力下降,从而诱发糖尿病。一些非胰岛素依赖型糖尿病患者表现为mtDNA的点突变。如mtDNA3243位A→G突变,不仅影响了tRNALeu的合成,还累及转录终止因子的结合,造成线粒体蛋白的合成不足,影响了ATP的生产,这一突变的母亲遗传倾向较大。

  MtDNA突变的后果是十分严重的,不仅导致衰老并可引发多种疾病,尽管造成这些恶果的原因可能是多方面的。但是,由于mtDNA突变所致的呼吸链有关的酶类出现异常以及OXPHOS功能异常是不可忽视的因素,因为mtDNA编码的蛋白质亚基都是ATP生产有关的,而线粒体在细胞能量供应及维持细胞正常代谢和功能方面是举足轻重的,所以,不难理解其与机体衰老和退行性疾病的密切关系。

  目前,对于mtDNA突变已经可以用PCR、Southern杂交、电镜等手段来有效地予以检测,已经提出一些可能的治疗线粒体疾病的方法,如补充呼吸链中的辅助因子、增加可氧化基质以及抗自由基损伤等,辅酶Q已经用于某些老年性退行性疾病的治疗,mtDNA基因的导入、含正常mtDNA基因型细胞的再增殖、导入以及融合等均有可能成为mtDNA突变性疾病的基因治疗手段。

  四、染色体端粒长度与衰老

  正常人细胞随着复制能力下降,其染色体终端即端粒(telomere)的长度变短,端粒长度受染色体端粒酶(telomerase)活力的调节,端粒酶以端粒RNA为模板合成端粒序列而使端粒延长。

  有人曾经对人淋巴细胞的衰老性变化与其端粒长度以及端粒酶活性的关系在各种体内体外环境及处理因素下做了观测,发现端粒酶活力和端粒长度的调节有可能是淋巴细胞增殖的控制因素,这已在人淋巴细胞的发育、分化、激活和衰老过程中被验证。曾发现外周血CD+4T细胞的端粒长度在体内随着衰老以及从静息细胞到记忆细胞的分化过程而缩短,在体外则随着细胞的分裂而缩短,这些结果提示端粒长度与淋巴细胞增殖过程以及记忆性增殖潜力相关。与之相反,体内实验中扁桃体B细胞分化及生发中心形成过程中凋粒长度却是增加的。同时,也发现在体内T细胞发育和B细胞中端粒酶活性是被严格控制着的;在胸腺细胞和生发中心B细胞内凋粒酶活力外于高水平,在静止、成熟的外周血淋巴细胞的该酶活力处于较低水平。最后,静息淋巴细胞保持着在活化时上调端粒酶活性的能力,并且这种能力并不随着细胞的逐渐衰老而降低。虽然端粒酶对淋巴细胞的确切作用有待于进一步阐明,但这种酶可能有助于避免T、B淋巴细胞终端的缩短,并因此在淋巴细胞的生长、分化和激活过程中起重要作用。

  已经发现永生细胞以及恶性肿瘤等细胞隐匿有端粒酶活性,即在这些细胞其端粒长度被维持,以维持这些细胞的超乎寻常的持续性增殖能力。

  大量试验资料表明,端粒酶活性的高低直接影响端粒长度的增减,而端粒的长短直接影响细胞内基因的表达,进而影响到细胞的增殖和寿命。所以,未来进一步探索衰老因素、长寿因素对端粒长度的影响,或者克隆人端粒基因等研究课题将对人体衰老与抗衰老具有十分重要的理论及实际意义。

  五、免疫功能退化和衰老

  在对衰老与抗衰老的研究中发现,免疫系统的功能状态与衰老的发生和发展有着十分密切的关系,而且,免疫系统本身也有衰老退化的问题,而这种衰老退化在极大程度上表现为机体的衰老性改变。

  老年人的免疫器官表现为明显的退化,其中以胸腺的改变量为明显。老年人胸腺的组织学特征主要表现在衰老的胸腺皮质只剩下一些稀疏的淋巴细胞,其间杂以大量的充满类脂质颗粒的巨噬细胞。在髓质和皮质中,均可见到大量的浆细胞和肥大细胞,大部分胸腺组织被结缔组织和脂肪所代替。电镜下观察到胸腺皮质变薄,胸腺细胞显著减少,髓质上皮细胞碎裂成多个小巢,其间堆积着大量的巨噬细胞、浆细胞、淋巴细胞和纤维母细胞。

  动物实验发现,将老龄鼠的胸腺植入幼鼠体内,移植物可重新获得生命力:但将幼龄鼠的胸腺植入到老龄鼠体内却不能改变老龄鼠的低免疫反应状态。又发现,老龄鼠的骨髓干细胞植入幼龄鼠体内后,宿主鼠的B细胞生成减少,其功能也较低下,但此时T细胞的功能却十分活跃。以上资料充分表明,胸腺-骨髓-激素系统是决定机体免疫功能状态的3个关键环节,而在衰老过程中起决定作用的是胸腺。

  以免疫活性细胞来看,老年人体内重要免疫活性细胞如T细胞等的数量明显少于年轻人,而且在免疫应答中的反应性明显降低,但是,有些细胞如K细胞的数量却随年龄的增加而增加,其体外抗靶细胞的自发性细胞毒性也比年轻人为高,但其体内作用和意义如何却需进一步探索。T细胞是免疫活性细胞中最为重要的细胞群之一,老年人T细胞总数减少但其亚群的改变主要是TH/T5的增高,而另一重要细胞群——B细胞在人一生中数量变化不大,但其功能显然受TH/T5变化的影响,巨噬细胞(Mф)的数量和功能随年龄的变化不明显,对于T、B细胞的辅助协同作用也无明显变化,但是其识别和提呈抗原的能力却随年龄的增长而有所下降。表-1给出老年人和年轻人外周血白细胞的变化。

(责任编辑:泉水)
顶一下
(19)
100%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片