首页 | 家园 | 百科 | 下载 | 书库 | 仪器 | 展会 |人才 | 公司 | 网址 | 问答 | 论坛 | 注册 | 通行证登录 | English

生物行

生物行   进展 | 摘要 | 人物 | 医药 | 疾病 | 技术 | 健康 | 能源   生物航   供应 | 求购 | 公司 | 展会 | 要发布
论坛   神经科学 | 神经系统疾病 | 实验技术 | 求职招聘 | 器材试剂 | 文献检索 | 读书笔记 | 考试招生 | 软件使用
当前位置: 主页 > 热点聚集 > 农林牧渔 >

植物抗旱机理研究进展(2)

时间:2005-11-01 09:03来源:中国水稻信息网 作者:bioguider 阅读:




3 活性氧清除  



  植物受到水分、盐分胁迫时,产生活性氧,对细胞造成损伤,具体表现在4个方面:①活性氧能与酶的巯基或色氨酸残基反应,导致酶失活;②活性氧会破坏核酸结构,攻击核酸碱基,使嘌呤碱和嘧啶碱结构变化,导致变异出现或变异的积累;③DNA是蛋白质合成的信息,由于活性氧对DNA复制过程的损伤,从而妨碍蛋白质合成;④启动膜脂过氧化反应,使维持细胞区域化的膜系统受损或瓦解。大量的研究实验表明,植物体内广泛存在的抗氧化酶系统(超氧化物歧化酶SOD)、过氧化氢酶CAT、过氧化物酶POD等)能有效清除活性氧,保证细胞正常的生理功能,维持其对干旱胁迫的抗性。有研究表明,耐旱植物在逆境条件下能使保护酶活力维持在一个较高水平,有利于清除自由基,降低膜脂过氧化水平,从而减轻膜伤害程度。  



4 LEA蛋白与植物抗旱性  



  LEA蛋白(Late  Embryogenesis  Abundant  protein)是指胚胎发生后期种子中大量积累的一系列蛋白质。LEA蛋白广泛存在于高等植物中。在植物个体发育的其他阶段,也能因ABA或脱水诱导而在其他组织中高水平表达。一般认为,LEA蛋白在植物细胞中具有保护生物大分子,维持特定细胞结构,缓解干旱、盐、寒等环境胁迫的作用。LEA蛋白大多是高度亲水的。高度亲水性有利于LEA蛋白在植物受到干旱而失水时,能够部分替代水分子,蛋白质的多羟基能保持细胞液处于溶解状态,从而避免细胞结构的塌陷,稳定细胞结构,尤其是膜结构。在干旱脱水过程中细胞液的离子浓度会迅速升高,高强度的离子浓度会造成细胞的不可逆伤害。在第3组LEA蛋白的基元序列所构成的兼性α-螺旋结构中,亲水和疏水氨基酸分别处于螺旋的特定位置,形成分子内螺旋束,其表面具有束缚阴离子和阳离子的能力,因此,也能控制高盐、缺水伤害。  



5 植物抗旱相关基因的研究  



  了解植物适应干旱胁迫的分子机理有利于开展抗旱基因工程研究,对提高植物抗旱能力,促进农业生产的发展具有非常重要的意义。  



5.1 编码植物抗旱关键基因的克隆  



  1)与脯氨酸合成酶相关的基因,即脯氨酸合成酶基因族。其中包括了吡咯啉-5-羧酸合成酶基因P5CS及PVAB2,吡咯琳-5-羧酸还原酶基因P5CR及PproC1,榆钱菠菜脯氨酸转运蛋白基因Ah-ProT1,编码s-腺甘甲硫氨酸合成酶基因SAM1和SAM3硫醇蛋白酶的rd19A、rd21A基因等。将脯氨酸合成途径中的第1个酶——P5CS基因转入烟草和水稻后,转基因植株中P5CS  mRNA的含量明显提高,转化植株的耐旱能力也比对照有所增加。此外,大量研究也表明,在干旱胁迫条件下,P5CS水平提高,胁迫解除,P5CS基因表达水平下降,乙酰胆碱由胆碱单加氧酶(Choline  Monooxygenase,CMO)或胆碱脱氢酶(Betaine  Aldehyde  Dehydrogenase  CDH)、甜菜碱醛脱氢酶(Betain  Aldehyde  Dehydragenase,BADH)两步催化合成甜菜碱。现已在菠菜、甜菜、山菠菜中成功克隆出CMO基因,从烟草中克隆出CDH基因,从甜菜、菠菜、山菠菜、大麦、水稻及木本植物海榄雌中克隆出BADH基因。此外,乙酰胆碱氧化酶(Choline  Oxidase,COD)因为可以把乙酰胆碱一步合成甜菜碱而日益受到人们的关注。目前,codA基因已从水稻、拟南芥中成功克隆。Sakamoto等(1998)用编码codA基因转化水稻,获得两种分别在细胞的两个不同部位表达的乙酰胆碱氧化酶转化株,这两种转化株的耐盐、抗旱以及耐低温的能力均有所增强。  



  2)LEA基因、水孔蛋白基因及脱水素基因。Xu等(1996)用来自大麦的一种LEA蛋白基因HVA1转化水稻,使其在水稻中过量表达,结果发现水稻的耐旱能力明显提高,且提高幅度与LEA蛋白的表达量一致,为LEA蛋白在植物耐旱、抗盐过程中的作用提供了直接证据。棉花11个LEA相关基因,分别是D19、B19.1、D11、rab、16A-D、HVA1、D113、le2、D29和D34,以及拟南芥CORl5a、pRABA  T1两个基因已经成功分离。拟南芥中有30个基因编码水孔蛋白得到克隆,其中,12种属于TIP,12种属于MIP,6种属于NLM。已经得到克隆的编码Na+/H+反向运输蛋白的基因包括:拟南芥中的AtN  HX1、SOS1(Salt  Overly  Sensitive),小麦的  TαN  HX1  和水稻的OsN  HX1基因。脱水素是一种广泛存在于高等植物中的干旱诱导蛋白,具有很强的亲水性和热稳定性。具有保护植物细胞的大分子在脱水过程中不受伤害的功能。由于脱水素是在种子成熟时发挥作用,因此也把它归于LEA蛋白。脱水素基因是一个大的基因家族,目前已有多个脱水素基因或相关基因被克隆及定位,如大麦中dhn1、dhn11,玉米中的dhn1/rabl7和dhn2以及拟南芥中的dhnX、cor47、rab18  等。  



5.2 抗逆相关的转录因子及双组分系统基因  



  抗逆相关的转录因子的研究近来也日益受到重视,它们可以控制一系列的下游胁迫反应,从而启动信号传导中的级联反应,使细胞产生相应的抗逆性。至今,已克隆出了大量的与植物抗旱相关的转录因子。例如,拟南芥  DREB1A~C  和  DREB2A~B,CBF1~3、Hs、At-GluR2、ATHB6、SCOF-1、Atmyb2等。  



  在拟南芥和烟草中还发现双组分系(Two-tom-ponent  System)基因的存在,其基因产物为“感受器”和“反应调节器”合二为一的激酶蛋白。如拟南芥的双组分系统基因  ATRR1  和  ATRR2  受干旱、高盐及低温的诱导。烟草双组分系统基因  NTHK1  和  NTHK2  则受高盐胁迫处理的诱导。双组分系统基因被诱导表达后,产生一系列的细胞应激反应,提高植物的干旱胁迫适应能力。  



6 展望  



  水分不足是限制农业发展的重要因子,提高植物自身抗旱性和水分利用效率来发展农业存在着较大的潜力,发展前景十分广阔。植物抗旱是一个复杂的问题,研究表明,植物的抗旱性是由多基因控制的,不同作物和品种适应干旱的方式是多种多样的,一些作物具有综合性的、几种机理共同起作用的抗旱特性。  (责任编辑:泉水)
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
推荐内容