宽禁带半导体材料具有热导率高、击穿电场高等特点,在高频、大功率、耐高温、抗辐照的半导体器件等方面具有广泛的应用前景。 在国家自然科学基金、科技部和北京市科委的资助下,中科院物理研究所/北京凝聚态物理国家实验室(筹)研究员陈小龙及其领导的功能晶体研究与应用中心一直致力于宽禁带半导体磁性起源问题的研究。最近,他们从实验和理论上证明了双空位导致磁性,并在实验上给出了直接证据,为通过缺陷工程调控宽禁带半导体的磁性提供了实验基础,相关结果发表在《物理评论快报》上。 更优越的电磁特性 在半导体工业中,人们习惯地把锗(Ge)、硅(Si)为代表的元素半导体材料称为第一代半导体材料,把砷化镓(GaAs)、磷化铟(InP)为代表的化合物半导体材料称为第二代半导体材料,而把氮化镓(GaNP) 、碳化硅(SiC)为代表的宽禁带半导体材料称为第三代半导体材料。 “由于这些材料的带隙更宽(禁带宽度大于2个电子伏特),和硅半导体材料相比,它们表现出更优越的电磁特性,可以实现更多电磁功能。”陈小龙说,“比如电脑的CPU运转起来会发热,如果温度过高,半导体材料就会失去其电磁性能,CPU就不能工作,所以CPU大多要加风扇冷却。普通的半导体硅工作环境是100摄氏度左右,而碳化硅材料可以在几百摄氏度的环境下工作。” 宽禁带半导体材料有与硅、砷化镓不同的微结构,因而具有独特的光学、电学性质。它们一般有更高的击穿电场、高饱和漂移速度和高热导率,小介电常数和高的电子迁移率,以及抗辐射能力强等特性,从而成为国内外研究的热点,更成为制作高频、大功率、耐高温和抗辐射器件的理想材料。 目前非常受人瞩目的半导体照明是一种新型的高效、节能和环保光源。它将逐步取代目前使用的大部分传统光源,被称为21世纪照明光源的革命。而氮化镓基高效率、高亮度发光二极管(LED)的研制是实现半导体照明的核心技术和基础。 DVD的光存储密度与作为读写器件的半导体激光器的波长的平方成反比,氮化镓基短波长半导体激光器可以把当前使用的砷化镓基半导体激光器的DVD光存储密度提高4至5倍,将会成为光存储和处理的主流技术。 高温、高频、高功率微波器件是无线通信、国防等领域急需的电子器件,如果目前使用的微波功率管的输出功率密度提高一个数量级,微波器件的工作温度提高到300摄氏度,将解决航天航空用电子装备和民用移动通信系统的一系列难题。 (责任编辑:glia) |