我们热爱生命科学!-生物行

格式塔心理学原理二(21)

时间:2008-10-06 02:25来源:生物导航网 作者:bioguider 点击: 750次

    即便作为纯经验主义的概括,柯特定律也有其自身的价值。柯特定律除了对断续运动理论(见边码p.293)所作贡献以外,它们还被我和瑟马克用来证明可见的断续运动和实际运动的动力相似性,这是用已在这里省略的一些论点和实验来加以证明的
 

  • ,从而使我们认识到运动和闪烁融合现象(flicker-fusion
      phe-nomena)之间的联系,该现象是由布朗(1931年b)直接证明的,并由梅茨格(Metzger)在一种稍为不同的环境中加以证实(1926年)。在柯特定律和布朗定律之间建立起来的那种联系使它们上升到纯经验主义的概括,并且证明它们表述了知觉组织的基本事实。就其本身而言,它们并非真正的定律,而应当恰当地称之为“柯特规则”(Korte
      rules),不过,它们是从一些尚未完全认识的基本定律中产生的。在柯特、塞马克以及布朗的结果之间的逻辑一致性(这些结果是在不同时间用不同的方式获得的)确实是一个有利于说明这些结果和推论之意义的有力论点。
      运动和时间

        布朗的理论推断及其实验的独创性把我们对运动过程的了解引向深入。我们已经讨论了现象速度和现象距离,还没有讨论现象时间。然而,如果不考虑时间因素的话,真正的速度界定是不可能作出的。在动觉(kinematics)中,速度被解释成ds/dt,对于不变的速度来说,它相当于s/t。那么,有否可能将这一界定转化成行为速度或经验速度呢?也就是说界定v=s/t,其中v代表现象速度,s代表距离,t代表时间。布朗不仅引入了这一假设,而且还用严密的实验对它进行证明(1931年a)。这一假设的含意确实是令人震惊的。假定我们有两个不同照明的等场(equal
      fields)。我们知道,如果客观速度相等,那么,在较亮场内的似动速度vb比之较暗场内的速度vd要慢一些。明度差异,至少像布朗所使用的那种明度差异,并不影响似动的大小。因此,我们可以写出vd>vb,s/td>s/tb。由于在这一不等式中,两个分子是相等的,而分母不相等,则td一定小于tb,而且,由于客观上td=tb,则时间在较暗的场内一定会比在较亮的场内流失得快一些。这一结论不仅令人惊讶,而且不可避免。它使时间的经历成为一种新的受到场条件限定的特性,但其本身并不如此令人震惊;令人震惊的事实是,经历的时间应当受到与时间没有什么关系的场因素的影响。布朗对他的论点之逻辑并不满意,于是使用实验来检验其论点。在这些实验中,观察者必须把一个看到的运动的持续时间与由两种(视觉或听觉)信号所标示的时间间隔的长度作比较。后者的时间间隔保持不变,可是观察到的运动速度是变化的,直到它的时间长度与时间间隔看上去相等为止。如果两种运动群集的似动持续时间都等于标准持续时间,那么,它们的似动速度也必须相等。不过,我们从先前的实验中得知,为使这些速度看上去相等,较亮场内的实际速度必须比较暗场内的速度更大些。在一个特定的群集中,据发现vb/vd的关系为l.23。vb/Vd=(Sb
      /tb)/Sd/td,并且由于Sb=sd,所以vb/vd=td/tb=1.23。

        如果我们已知td或tb,我们便可预示另一个。为使看上去与由信号所标示的时间间隔具有相等的时间长度,较亮场内(tb)的运动持续时间必须是1.45秒(5名被试的平均数)。根据我们上一个等式,我们推断出td=1.23,tb=1.23×l.45秒=1.78秒。这充分证实了预见。

        布朗以同样方式测试了有关各种其他群集的时间假设,包括场的维度的全部和部分转换,以及对或多或少同质场的假设。所得结果证实了预见,甚至当vS/vB的商(预见是以该商为基础的)由其他观察者所决定,而不是由那些对两种持续时间进行比较来证实预见的观察者所决定时,也是如此。实验足以证明一般的假设,这是毫无疑问的,我们可以认为这种一般的假设在下列情形中(即在尚未由特定实验所证实的情形中)也是正确的。如果我们把一切群集都包括在内(对它们来说,现象速度得到了研究),我们便可以说:时间在较小的、较暗的和较近的场内流动得较快,而且运动方向越垂直,它就越不处于水平状态;此外,速度的完全转换定律(the
      law of complete transposition of veloci-ties)是与持续时间的完全转换(complete
      transposition of durations)相平行的。

        布朗的这些推断和实验开创了科研和推测的广阔领域。关于我们的时间经历的生理相关物问题,最近已由波林(Boring,1933年)进行过讨论,他充分意识到这个问题的困难,意识到以下事实,即这种生理相关必须是一个过程,或者说是一个过程的一个方面。苛勒关于运动(以及定位;见边码p.281)的论点在时间领域内同样得到了应用。在第十章,与此问题有关的某些假设将会得到发展。这里,我们仅仅指出,如果看到的时间与一个过程或一个过程的一个方面相一致的话,那么,发生在一个场内的一些过程的性质(不仅仅是场的其他特征)将决定场内发生的事件的持续时间。对于这个复杂问题尚未开展过研究,尽管布朗提及过这一事实,而且在其实验中予以证实,即“充满的”时间(“filled”time)在现象上比“不充满的”时间(“unfilled”time)更长一些。未来的研究可能会发现现象空间和时间之间的基本的相互依存性,这已为贝努西(Benussi,1913年,pp.285f.)和盖尔布(Gelb,1914年)在类似的实验中所指出,并为赫尔森(Helson)和金(king)的更为彻底的研究所表明,这里略去了后者的研究。
      融合的选择

        现在,我们转向可见运动的最后一个方面,让我们讨论上面(见边码p.287)阐述过的那个问题。我们对运动的解释(不论是实际运动还是断续运动)是把边缘分离过程的融合作为部分假设来对待的。我们现在调查一些因素,它们决定了与迄今为止所讨论的内容有所不同的融合。如果在断续运动中只有两个物体被展现,那么,即使发生融合,也只能在与这两个物体相一致的组织过程之间发生。但是,如果在这两次相继展现中,每一次展现包括一个以上的物体,那么,问题便发生了,也就是说,第一次展现的哪个物体将与第二次展现的哪个物体发生融合,换言之,哪种运动将被看到。同样的原理也适用于实际运动。如果只有一个物体通过场,那么,就不会有什么问题了:随着对不同的锥状细胞的相继刺激,在视网膜上引起的过程将彼此发生融合。但是,如果两个相等物体以不同方向通过场,并且同时通过同一个点,那么,“选择”的问题便又重新产生。有三种调查对这一问题进行过探索,前两种调查由特纳斯和冯·席勒(Ternnsand
      Von Schiller)用断续运动进行,第三种调查则由梅茨格(1934年)用实际运动进行。
      特纳斯的实验

        为了介绍特纳斯的问题,我们来比较一下两种简单的断续实验。在这两种实验中,每一次展现由两个点组成,致使其中一个点(即a点)在两次展现中均出现在同一地点,而另一个点则出现在不同地点(分别在b和c处)。由此可见,在两次展现中,第一次为小,第二次为ac。两次展现之间的唯一差别在于三个点的安排,如图86的A和B所示,其中●表示第一次展现,○表示第二次展现,


    A图中,我们看到a处于静止状态,而另一个点则从b向C的位置移动。然而,在B图中,情况则不同了,可以看到,没有一个点处于静止状态,两个点均处在运动之中,一个点从b向a移动,另一个点从a向c移动。由此可见,在第一种情形里,融合在出现于同一地点(a)的两个兴奋之间发生,并在出现于不同地点的两个其他兴奋之间发生,而在B图中,出现于同样地点(a)的一些过程并不融合,相反,a1与c2融合,a2与b1融合。由此可见,融合必须依赖其他因素,而不仅仅依赖空间的接近性(空间的同一性被认为是最有可能接近的例子)。那么,这里所指的其他因素究竟是什么呢?“现象同一性主要由格式塔同一性(gestalt
      identity)所决定,由各部分的格式塔同源性(gestalt
     homology)所决定,也就是说,由整体特性而不是由部分关系所决定”(特纳斯,p.101)。让我们通过我们自己的两个实验来对这种主张进行解释。在第一个实验中,即图A中,a通常作为一个摆的支点而出现;因此,a1和a2是格式塔同源的,与此相似的是,b和c也是同源的,因为它们作为摆臂的两个终端点。可是,另一方面,在B图中,a1是一对点子的右点,a2是左点,因此a1和a2不是同源的,a1与a2同源,a2与b1同源。当a2在第一个实验中出现时,它选择了过程a1来进行融合(a1是出现于同样地点的),但是,当a2在第二个实验中出现时,它并不选择“同源”(Syntopic)过程a1,而是选择了同源过程b1。

    在图
    87A中,融合的发生是与d、e、f各点的一致性位置相背的,而在图B中,这些一致点(d、e、f)便融合了,而且c1与g2融合,b1与b2融合,a1与i2融合。在图A中,人们可以看到一条曲线作为整体而移动,并在它自己的曲线中向右方移动,在图B中,人们可以看到一个静止的水平臂(d、e、f)和一个倾斜臂,该倾斜臂从一个位置向另一个位置跳跃。就各点的同源性而言,两种图形实际上是相等的;在第一次展现时,左边端点是a,在第二次展现时,则是d,如此等等。但是,在其他方面,这两种图形又是不同的。在图A中,由于六个同时可见的点一致地结合起来,而它们在图B中却有两个独特的点,也就是d和f那里的图形十分清晰,从而可以一分为二。与此同时,正因为这些特性,图A中的六个点可以从它们的第一位置向第二位置移动,而使整个曲线的形状不发生任何变化,可是在图B中,虚线只有通过暂时的变形做到这一点。因此,与空间同一性相背的具有选择作用的单一运动发生在图A里面,而不是发生在图B里面,后者的整个图形分裂为两部分。
      冯·席勒的实验

    迄今为止,这种两可性已使若干作者得出结论,即视觉运动从本质上说是任意的和不可预示的,它是一种心理定势或态度,刺激模式只具次级的重要性。冯·席勒用潜在的两可图形批驳了这种观点,并证明组织因素决定了选择。根据与图

    那么,最经常看到的运动便是通过第三维度绕着对称的水平轴的一种旋转运动,较少看到的运动是绕着垂直轴的图形平面运动,十分罕见的运动是一种下一上一下的运动,并在运动期间产生形状的歪曲[施泰尼希(
    Steining),冯·席勒]。最后一个定律是与接着通过的路径相关的;使整个途径(一切运动部分的途径)尽可能变得简单和形状化的倾向可在该因素与等同因素发生冲突的情形中得到证明。
      梅茨格的实验

    在图
    90中,横座标代表空间距离,纵座标(向下读)代表时间。于是,该图代表两个点,其中一个点从左到右以均匀速度移动,另一个点则从右到左以同样速度移动,两个点在其轨道的中点相遇,这个中点是O。当两个点通过O点时,只有一个视网膜点(在每只眼睛里面)受到刺激;在此之前和在此以后,则两个点均受到刺激。无疑,观察者应当看到两个点的直线运动。当我们把这个图形视作空间图形时,我们确实一眼就会看到两根线相互交叉;a和b、c和d将归属在一起。然而,我们又无法看到两个直角彼此之间在它们的角项处相接触,致使a和b归属在一起,b和c归属在一起(其他的结合,ac和bd,则可以不予考虑,因为在运动中可能没有平行现象,只有运动轨迹的相继部分可以形成一个完整轨迹的一部分)。对于我们同时知觉这种空间图形来说是正确的东西,对于运动的知觉来说也同样可能:视网膜几何学并不包含这样的因素,即把ad是一个轨迹,cd是另一个轨迹的事实排除在外的因素。但是,在运动中,还存在着更多的可能性。由于在O点只有一点受到刺激,因此这种刺激模式也可能与下列情况共存,即两个点(或者两个点中的任何一个点)都在O点上消失,并且有两个新的点从O点上冒出来。有否定律去决定实际上发生的事呢?

        梅茨格的主要结果能以下列方式进行阐述:如果有人运用图90的图解产生的运动并加以描绘的话,那么,当我们注视该图形时所出现的或占支配地位的空间模式通常与我们注视着运动影子时出现的或占支配地位的运动模式是一样的。这就意味着:相继组织定律(也就是决定融合物体选择的定律)与支配空间模式之组织的定律是同样的。梅茨格十分明确地陈述了这种一致性。我们仅仅提及一点:与纯空间组织中良好的连续因素相一致的有运动的平稳曲线因素,以及空间-时间组织中的连续速度因素。
      显然,情况可能是这样的:不同的因素有利于不同的结合。这些客观因素之间的冲突越大,模糊性便越大,从而使定势和态度等主观因素的影响也越大。上

  • (责任编辑:泉水)
    顶一下
    (3)
    100%
    踩一下
    (0)
    0%
    ------分隔线----------------------------
    发表评论
    请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
    评价:
    表情:
    用户名: 验证码:点击我更换图片
    特别推荐
    推荐内容