首页 | 家园 | 百科 | 下载 | 书库 | 仪器 | 展会 |人才 | 公司 | 网址 | 问答 | 论坛 | 注册 | 通行证登录 | English

生物行

生物行   进展 | 摘要 | 人物 | 医药 | 疾病 | 技术 | 健康 | 能源   生物航   供应 | 求购 | 公司 | 展会 | 要发布
论坛   神经科学 | 神经系统疾病 | 实验技术 | 求职招聘 | 器材试剂 | 文献检索 | 读书笔记 | 考试招生 | 软件使用
当前位置: 主页 > 生物技术 > 实验室知识 >

光学分析方法的发展

时间:2006-02-23 15:22来源:教育装备采购网 作者:bioguider 阅读:
    光学分析法是利用待测定组分所显示出的吸收光谱或发射光谱,既包括原子光谱也包括分子光谱。利用被测定组分中的分子所产生的吸收光谱的分析方法,即通常所说的可见与紫外分光光度法、红外光谱法;利用其发射光谱的分析方法,常见的有荧光光度法。利用被测定组分中的原子吸收光谱的分析方法,即原子吸收法;利用被测定组分的发射光谱的分析方法,包括发射光谱分析法、原子荧光法、X射线原子荧光法、质子荧光法等。

    (一)比色法

  分光光度法的前身是比色法。比色分析法有着很长的历史。1830年左右,四氨络铜离子的深蓝色就被用于铜的测定。奈斯勒的氨测定法起源于1852年,大约在同一年,硫氰酸盐被用来分析铁。1869年,舍恩报道说钛盐与过氧化氢反应会产生黄色,1882年,韦勒(Weller)将此黄色反应改进成一种钛的比色法。钒也能与过氧化物发生类似的反应,生成一种橙色络合物。1912年,梅勒一方面利用1908年芬顿发现的一个反应(二羟基马来酸与钛反应呈橙黄色,与钒反应无此色),另一方面利用与过氧化物的反应,得出了一种钛和钒这两种元素的比色测定法。

  吸收光度分析法提供了非化学计量法的一个很好例子。有色化合物的光吸收强弱随着所用辐射波长的大小而变化。因此早期的比色法主要凭经验将未知物与浓度近似相等的标准溶液进行对比。比如象奈斯勒在氨测定法中所作的比较。比色剂,如杜波斯克比色计,是通过改变透光溶液的厚度和利用比尔定律,来对未知物的颜色与标准液的浓度进行对比的,这种仪器并不适用于所有的有色物质,它充其量也不过经验程度很高罢了。 1729年,P·布古厄(Bouguer)观察到入射光被介质吸收的多少与介质的厚度成正比。这后来又被J·H·兰贝特(Lambert,1728—1777)所发现,他对单色光吸收所作的论述得到了下列关系式:


上式中I是通过厚度为x的介质的光密度,a是吸收系数。利用边界条件x=0时,I=I0,积分得到:

I=I0e-ax

1852年,A·比尔(Beer)证实,许多溶液的吸收系数a是与溶质的浓度C成正比的。尽管比尔本人没有建立那个指数吸收定律公式,但下列关系式

I=I0e-acx

仍被叫做比尔定律,式中浓度和厚度是作为对称变数出现的。这个名称似乎是在1889年就开始使用了。

  1940年以前,比色法一直是最直观的分析法,往往是以高度经验为根据的——实际上依靠了奈斯勒管、杜波斯克比色计和拉维邦色调计。色调计利用可叠加有色玻璃盘作为颜色比较的载片。某些测定甚至是将颜色与彩纸和有色玻璃作比较来进行的。T·W·理查兹在有关卤化银的测定方面,发明了一种散射浊度计,用通过微浊溶液来测量光散射。

  1940年初左右,分光光度计开始广泛使用,几种高质量、应用简便的工业仪器使比色法更加普及,最著名的仪器,如蔡斯—普尔费利希、希尔格、斯佩克尔、贝克曼和科尔曼分光光度计,采用滤波器、棱镜和光栅,使光的波长限制在一个很窄的范围内。光吸收一般是用光电管测量的。

  典型的比色试剂是二苯基硫卡巴腙(diphenyl-thiocarbazone)通常叫做双硫腙dithizone,是艾米尔·费歇尔在1882年发现的,他观察到双硫腙很容易和金属离子形成有色化合物,但他没有继续这项研究。1926年,海尔穆特·费歇尔研究了这个化合物,并报道了把它用于分析的可能性,这种可能性在30年代得到了最充分的利用。这种试剂与大量阳离子所形成的有色螯合物极易溶解于氯仿那样的有机溶剂中。于是,这种络合物就可从大量的水溶液中萃取到少量的溶剂中,从而使这种方法对痕量物质也非常灵敏。

  比色法借助仪器可用于波长短到2000Å的紫外区。向紫外区的进一步扩展是不可能的。因为容器、棱镜及空气本身也会吸收光。记录方法(起初主要是照相记录),随着实用光电管的发展得到了明显的改进。紫外分光光度法在测定芳香化合物,如苯酚、蒽和苯乙烯方面特别有价值。

  紫外吸收在研究有机化合物的结构时也很有用,它同束缚松散的电子缔合,如出现在双键中的电子。乙烯、乙炔、羰基化合物和氰化物中的不饱和键吸收2000Å以下的光,因此处于紫外分光光度计可测范围之外。不饱和键周围有取代基时,会使光的吸收向长波方向移动,但仍远离实际可测的范围。偶氮基、硝基、亚硝酸盐、硝酸盐和亚硝基的吸收光范围在2500~3000Å之间。不饱和键发生共轭现象会使吸收增强。引起光向长波方向移动。芳香环具有一个特征吸收本领,可用于鉴定。

(二)红外光谱法

  辐射能吸收用作一种分析工具的最大进展也许是在红外光谱领域。1920年以前,利用波长在8000Å到几十分之一毫米光谱区的仪器就已经有了,但红外光谱研究的真正进展却发生在1940年以后。这个光谱区含有象分子振动所包括的那样一些频率的光。原子质量、键强和分子构型这样一些重要因素与所吸收的能量有联系。因此某些波段易与OH、NH、C=C和C=O那样一些基团相对应。

  红外光谱的兴起靠的是发展热电堆以及辐射计、放大器和记录器方面所取得的进展。许多年来,这些仪器的光学部分比检测和记录机构要令人满意得多。

  红外光谱主要是作为一种定性工具使用的。同时如果大量的日常分析工作——比如,工业实践中常常必需的分析工作——证明红外光谱有利于这种工作的操作的话,那么它也可用于定量分析。定量红外光谱法已经用于分析硝基烷混合物。甲酚混合物和六氯化苯异构体方面。六氯化苯的γ—异构体可用作杀虫剂。红外光谱法已经是测定混杂有相关异构体的γ—六氯化苯的有用工具。红外光谱法在定性分析中极有价值,因为吸收位置和吸收强度能提供大量数据。过去人们曾做了大量的工作,绘制了许多键和基的光吸收性质图,使得有可能利用这种数据迅速确定出新化合物的结构。工业方面,红外光谱也有助于研究聚合作用方面的进展,因为单体和聚合体的红外吸收带相互间是有区别的。 目前红外光谱(IR)是给出丰富的结构信息的重要方法之一,能在较宽的温度范围内快速记录固态、液态、溶液和蒸气相的图谱。红外光谱经历了从棱镜红外、光栅红外,目前已进入傅里叶变换红外(FT—IR)时期,积累了十几万张标准物质的图谱。FT—IR具有光通量大、信噪比高、分辨率好、波长范围宽、扫描速度快等特点。利用IR显微技术和基本分离技术(matrixisolation,MI—IR)可对低达ng量和pg量级的试样进行记录,FT—IR和色谱的结合,被称为鉴定有机结构的“指纹”,这些优点是其他方法所难于比拟的。红外光谱近年来发展十分迅速,在生物化学高聚物、环境、染料、食品、医药等方面得到广泛应用。

(责任编辑:泉水)
------分隔线----------------------------
评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
推荐内容