The secretory function of neurons and neuroendocrine cells share many characteristics, as exemplified by work this week by Dudanova et al. The authors previously showed that a-neurexins are required for the efficient synaptic release of neurotransmitter, which was suggested to be attributable to regulation of voltage-dependent calcium channels. Now, they turned their focus to calcium-dependent exocytosis in neuroendocrine cells. Adult mice lacking two of the three a-neurexin genes were hypomorphic with a 40% reduction in body weight. Whole-cell patchclamp measurements of membrane capacitance of melanotrophs in pituitary gland slices indicated that secretion was indeed markedly reduced. The effect was most pronounced in newborn triple knock-outs lacking all three genes. However, calcium currents in melanotrophs were not reduced in the knock-outs, somewhat at odds with previous studies in neurons. The authors rather suggest that a-neurexins affect coupling of calcium channels to the release-ready pool of vesicles and to G-protein-coupled receptors. Irina Dudanova, Simon Sedej, Mohiuddin Ahmad, Henriette Masius, Vardanush Sargsyan, Weiqi Zhang, Dietmar Riedel, Frank Angenstein, Detlev Schild, Marjan Rupnik, and Markus Missler ### News tips from the Journal of Neuroscience Contact: Sara Harris Society for Neuroscience (责任编辑:泉水) |